最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

javascript - DrawingRendering 3D objects with epicycles and fourier transformations [Animation] - Stack Overflow

programmeradmin6浏览0评论

First Note: They wont let me embed images until i have more reputation points (sorry), but all the links are images posted on imgur! :) thanks

I have replicated a method to animate any single path (1 closed path) using fourier transforms. This creates an animation of epicylces (rotating circles) which rotate around each other, and follow the imputed points, tracing the path as a continuous loop/function.

I would like to adopt this system to 3D. the two methods i can think of to achieve this is to use a Spherical Coordinate system (two plex planes) or 3 Epicycles --> one for each axis (x,y,z) with their individual parametric equations. This is probably the best way to start!!

2 Cycles, One for X and one for Y:

Picture: One Cycle --> Complex Numbers --> For X and Y

Fourier Transformation Background!!!:

• Eulers formula allows us to depose each point in the plex plane into an angle (the argument to the exponential function) and an amplitude (Cn coefficients)

• In this sense, there is a connection to imaging each term in the infinite series above as representing a point on a circle with radius cn, offset by 2πnt/T radians

• The image below shows how a sum of plex numbers in terms of phases/amplitudes can be visualized as a set of concatenated cirlces in the plex plane. Each red line is a vector representing a term in the sequence of sums: cne2πi(nT)t

• Adding the summands corresponds to simply concatenating each of these red vectors in plex space:

Animated Rotating Circles:

Circles to Animated Drawings:

• If you have a line drawing in 2D (x-y) space, you can describe this path mathematically as a parametric function. (two separate single variable functions, both in terms of an auxiliary variable (T in this case):

• For example, below is a simple line drawing of a horse, and a parametric path through the black pixels in image, and that path then seperated into its X and Y ponents:

• At this point, we need to calculate the Fourier approximations of these two paths, and use coefficients from this approximation to determine the phase and amplitudes of the circles needed for the final visualization.

Python Code: The python code used for this example can be found here on guithub

I have successful animated this process in 2D, but i would like to adopt this to 3D.

The Following Code Represents Animations in 2D --> something I already have working:

[Using JavaScript & P5.js library]

The Fourier Algorithm (fourier.js):

//  a + bi
class Complex {
  constructor(a, b) {
    this.re = a;
    this.im = b;
  }

  add(c) {
    this.re += c.re;
    this.im += c.im;
  }

  mult(c) {
    const re = this.re * c.re - this.im * c.im;
    const im = this.re * c.im + this.im * c.re;
    return new Complex(re, im);
  }
}



function dft(x) {
  const X = [];
  const Values = [];
  const N = x.length;
  for (let k = 0; k < N; k++) {
    let sum = new Complex(0, 0);
    for (let n = 0; n < N; n++) {
      const phi = (TWO_PI * k * n) / N;
      const c = new Complex(cos(phi), -sin(phi));
      sum.add(x[n].mult(c));
    }
    sum.re = sum.re / N;
    sum.im = sum.im / N;

    let freq = k;
    let amp = sqrt(sum.re * sum.re + sum.im * sum.im);
    let phase = atan2(sum.im, sum.re);
    X[k] = { re: sum.re, im: sum.im, freq, amp, phase };
Values[k] = {phase};
  console.log(Values[k]);

  }
  return X;
}

The Sketch Function/ Animations (Sketch.js):

let x = [];
let fourierX;
let time = 0;
let path = [];

function setup() {
  createCanvas(800, 600);
  const skip = 1;
  for (let i = 0; i < drawing.length; i += skip) {
    const c = new Complex(drawing[i].x, drawing[i].y);
    x.push(c);
  }
  fourierX = dft(x);
  fourierX.sort((a, b) => b.amp - a.amp);
}

function epicycles(x, y, rotation, fourier) {
  for (let i = 0; i < fourier.length; i++) {
    let prevx = x;
    let prevy = y;
    let freq = fourier[i].freq;
    let radius = fourier[i].amp;
    let phase = fourier[i].phase;
    x += radius * cos(freq * time + phase + rotation);
    y += radius * sin(freq * time + phase + rotation);

    stroke(255, 100);
    noFill();
    ellipse(prevx, prevy, radius * 2);
    stroke(255);
    line(prevx, prevy, x, y);
  }
  return createVector(x, y);
}

function draw() {
  background(0);

  let v = epicycles(width / 2, height / 2, 0, fourierX);
  path.unshift(v);

  beginShape();
  noFill();
  for (let i = 0; i < path.length; i++) {
    vertex(path[i].x, path[i].y);
  }
  endShape();

  const dt = TWO_PI / fourierX.length;
  time += dt;

And Most Importantly! THE PATH / COORDINATES: (this one is a triangle)

let drawing = [

  { y:  -8.001009734    , x:    -50 },
  { y:  -7.680969345    , x:    -49 },
  { y:  -7.360928956    , x:    -48 },
  { y:  -7.040888566    , x:    -47 },
  { y:  -6.720848177    , x:    -46 },
  { y:  -6.400807788    , x:    -45 },
  { y:  -6.080767398    , x:    -44 },
  { y:  -5.760727009    , x:    -43 },
  { y:  -5.440686619    , x:    -42 },
  { y:  -5.12064623 , x:    -41 },
  { y:  -4.800605841    , x:    -40 },
...
...

  { y:  -8.001009734    , x:    -47 },
  { y:  -8.001009734    , x:    -48 },
  { y:  -8.001009734    , x:    -49 },


];

First Note: They wont let me embed images until i have more reputation points (sorry), but all the links are images posted on imgur! :) thanks

I have replicated a method to animate any single path (1 closed path) using fourier transforms. This creates an animation of epicylces (rotating circles) which rotate around each other, and follow the imputed points, tracing the path as a continuous loop/function.

I would like to adopt this system to 3D. the two methods i can think of to achieve this is to use a Spherical Coordinate system (two plex planes) or 3 Epicycles --> one for each axis (x,y,z) with their individual parametric equations. This is probably the best way to start!!

2 Cycles, One for X and one for Y:

Picture: One Cycle --> Complex Numbers --> For X and Y

Fourier Transformation Background!!!:

• Eulers formula allows us to depose each point in the plex plane into an angle (the argument to the exponential function) and an amplitude (Cn coefficients)

• In this sense, there is a connection to imaging each term in the infinite series above as representing a point on a circle with radius cn, offset by 2πnt/T radians

• The image below shows how a sum of plex numbers in terms of phases/amplitudes can be visualized as a set of concatenated cirlces in the plex plane. Each red line is a vector representing a term in the sequence of sums: cne2πi(nT)t

• Adding the summands corresponds to simply concatenating each of these red vectors in plex space:

Animated Rotating Circles:

Circles to Animated Drawings:

• If you have a line drawing in 2D (x-y) space, you can describe this path mathematically as a parametric function. (two separate single variable functions, both in terms of an auxiliary variable (T in this case):

• For example, below is a simple line drawing of a horse, and a parametric path through the black pixels in image, and that path then seperated into its X and Y ponents:

• At this point, we need to calculate the Fourier approximations of these two paths, and use coefficients from this approximation to determine the phase and amplitudes of the circles needed for the final visualization.

Python Code: The python code used for this example can be found here on guithub

I have successful animated this process in 2D, but i would like to adopt this to 3D.

The Following Code Represents Animations in 2D --> something I already have working:

[Using JavaScript & P5.js library]

The Fourier Algorithm (fourier.js):

//  a + bi
class Complex {
  constructor(a, b) {
    this.re = a;
    this.im = b;
  }

  add(c) {
    this.re += c.re;
    this.im += c.im;
  }

  mult(c) {
    const re = this.re * c.re - this.im * c.im;
    const im = this.re * c.im + this.im * c.re;
    return new Complex(re, im);
  }
}



function dft(x) {
  const X = [];
  const Values = [];
  const N = x.length;
  for (let k = 0; k < N; k++) {
    let sum = new Complex(0, 0);
    for (let n = 0; n < N; n++) {
      const phi = (TWO_PI * k * n) / N;
      const c = new Complex(cos(phi), -sin(phi));
      sum.add(x[n].mult(c));
    }
    sum.re = sum.re / N;
    sum.im = sum.im / N;

    let freq = k;
    let amp = sqrt(sum.re * sum.re + sum.im * sum.im);
    let phase = atan2(sum.im, sum.re);
    X[k] = { re: sum.re, im: sum.im, freq, amp, phase };
Values[k] = {phase};
  console.log(Values[k]);

  }
  return X;
}

The Sketch Function/ Animations (Sketch.js):

let x = [];
let fourierX;
let time = 0;
let path = [];

function setup() {
  createCanvas(800, 600);
  const skip = 1;
  for (let i = 0; i < drawing.length; i += skip) {
    const c = new Complex(drawing[i].x, drawing[i].y);
    x.push(c);
  }
  fourierX = dft(x);
  fourierX.sort((a, b) => b.amp - a.amp);
}

function epicycles(x, y, rotation, fourier) {
  for (let i = 0; i < fourier.length; i++) {
    let prevx = x;
    let prevy = y;
    let freq = fourier[i].freq;
    let radius = fourier[i].amp;
    let phase = fourier[i].phase;
    x += radius * cos(freq * time + phase + rotation);
    y += radius * sin(freq * time + phase + rotation);

    stroke(255, 100);
    noFill();
    ellipse(prevx, prevy, radius * 2);
    stroke(255);
    line(prevx, prevy, x, y);
  }
  return createVector(x, y);
}

function draw() {
  background(0);

  let v = epicycles(width / 2, height / 2, 0, fourierX);
  path.unshift(v);

  beginShape();
  noFill();
  for (let i = 0; i < path.length; i++) {
    vertex(path[i].x, path[i].y);
  }
  endShape();

  const dt = TWO_PI / fourierX.length;
  time += dt;

And Most Importantly! THE PATH / COORDINATES: (this one is a triangle)

let drawing = [

  { y:  -8.001009734    , x:    -50 },
  { y:  -7.680969345    , x:    -49 },
  { y:  -7.360928956    , x:    -48 },
  { y:  -7.040888566    , x:    -47 },
  { y:  -6.720848177    , x:    -46 },
  { y:  -6.400807788    , x:    -45 },
  { y:  -6.080767398    , x:    -44 },
  { y:  -5.760727009    , x:    -43 },
  { y:  -5.440686619    , x:    -42 },
  { y:  -5.12064623 , x:    -41 },
  { y:  -4.800605841    , x:    -40 },
...
...

  { y:  -8.001009734    , x:    -47 },
  { y:  -8.001009734    , x:    -48 },
  { y:  -8.001009734    , x:    -49 },


];

Share edited Jul 20, 2019 at 7:43 Spektre 52k12 gold badges122 silver badges399 bronze badges asked Jul 19, 2019 at 17:29 CWreckerCWrecker 5097 silver badges14 bronze badges 3
  • 2 FWIW. For 3D rendering in Javascript, it's hard to beat threejs . Plenty of examples and a large following. – Trentium Commented Jul 19, 2019 at 20:03
  • thanks for the remendation, ill give it a shot. Do you think it can replicate what i have in 2D but in 3D? with the rotating circles and stuff? :D – CWrecker Commented Jul 19, 2019 at 20:33
  • Not sure what the question is here really. – NoDataDumpNoContribution Commented Aug 17, 2019 at 12:18
Add a ment  | 

2 Answers 2

Reset to default 3

This answer is in response to: "Do you think [three.js] can replicate what i have in 2D but in 3D? with the rotating circles and stuff?"

Am not sure whether you're looking to learn 3D modeling from scratch (ie, creating your own library of vector routines, homogeneous coordinate transformations, rendering perspective, etc) or whether you're simply looking to produce a final product. In the case of the latter, three.js is a powerful graphics library built on webGL that in my estimation is simple enough for a beginner to dabble with, but has a lot of depth to produce very sophisticated 3D effects. (Peruse the examples at https://threejs/examples/ and you'll see for yourself.)

I happen to be working a three.js project of my own, and whipped up a quick example of epicyclic circles as a warm up exercise. This involved pulling pieces and parts from the following references...

  • https://threejs/docs/index.html#manual/en/introduction/Creating-a-scene

  • https://threejs/examples/#misc_controls_orbit

  • https://threejs/examples/#webgl_geometry_shapes (This three.js example is a great resource showing a variety of ways that a shape can be rendered.)

The result is a simple scene with one circle running around the other, permitting mouse controls to orbit around the scene, viewing it from different angles and distances.

<html>
  <head>
    <title>Epicyclic Circles</title>
    <style>
      body { margin: 0; }
      canvas { width: 100%; height: 100% }
    </style>
  </head>
  <body>

    <script src="https://rawgit./mrdoob/three.js/dev/build/three.js"></script>
    <script src="https://rawgit./mrdoob/three.js/dev/examples/js/controls/OrbitControls.js"></script>

    <script>

      // Set up the basic scene, camera, and lights.
      
      var scene = new THREE.Scene();
      scene.background = new THREE.Color( 0xf0f0f0 );
      
      var camera = new THREE.PerspectiveCamera( 75, window.innerWidth/window.innerHeight, 0.1, 1000 );
      scene.add(camera)
      
      var light = new THREE.PointLight( 0xffffff, 0.8 );
      camera.add( light );
      
      camera.position.z = 50;
        
      var renderer = new THREE.WebGLRenderer();
      renderer.setSize( window.innerWidth, window.innerHeight );
      document.body.appendChild( renderer.domElement );
      
      // Add the orbit controls to permit viewing the scene from different angles via the mouse.
      
      controls = new THREE.OrbitControls( camera, renderer.domElement );
      controls.enableDamping = true; // an animation loop is required when either damping or auto-rotation are enabled
      controls.dampingFactor = 0.25;
      controls.screenSpacePanning = false;
      controls.minDistance = 0;
      controls.maxDistance = 500;
      
      // Create center and epicyclic circles, extruding them to give them some depth.
      
      var extrudeSettings = { depth: 2, bevelEnabled: true, bevelSegments: 2, steps: 2, bevelSize: .25, bevelThickness: .25 };

      var arcShape1 = new THREE.Shape();
      arcShape1.moveTo( 0, 0 );
      arcShape1.absarc( 0, 0, 15, 0, Math.PI * 2, false );
      var holePath1 = new THREE.Path();
      holePath1.moveTo( 0, 10 );
      holePath1.absarc( 0, 10, 2, 0, Math.PI * 2, true );
      arcShape1.holes.push( holePath1 );
        
      var geometry1 = new THREE.ExtrudeBufferGeometry( arcShape1, extrudeSettings );
      var mesh1 = new THREE.Mesh( geometry1, new THREE.MeshPhongMaterial( { color: 0x804000 } ) );
      scene.add( mesh1 );
      
      var arcShape2 = new THREE.Shape();
      arcShape2.moveTo( 0, 0 );
      arcShape2.absarc( 0, 0, 15, 0, Math.PI * 2, false );
      var holePath2 = new THREE.Path();
      holePath2.moveTo( 0, 10 );
      holePath2.absarc( 0, 10, 2, 0, Math.PI * 2, true );
      arcShape2.holes.push( holePath2 );
          
      var geometry2 = new THREE.ExtrudeGeometry( arcShape2, extrudeSettings );
      var mesh2 = new THREE.Mesh( geometry2, new THREE.MeshPhongMaterial( { color: 0x00ff00 } ) );
      scene.add( mesh2 );

      // Define variables to hold the current epicyclic radius and current angle.
      var mesh2AxisRadius = 30;
      var mesh2AxisAngle = 0;

      var animate = function () {
        requestAnimationFrame( animate );

        // During each animation frame, let's rotate the objects on their center axis,  
        // and also set the position of the epicyclic circle.
        
        mesh1.rotation.z -= 0.02;

        mesh2.rotation.z += 0.02;
        mesh2AxisAngle += 0.01;
        mesh2.position.set ( mesh2AxisRadius * Math.cos(mesh2AxisAngle), mesh2AxisRadius * Math.sin(mesh2AxisAngle), 0 );

        renderer.render( scene, camera );
      };

      animate();
    </script>
  </body>
</html>

Note that I've used basic trigonometry within the animate function to position the epicyclic circle around the center circle, and fudged the rate of rotation for the circles (rather than doing the precise math), but there's probably a better "three.js"-way of doing this via matrices or built in functions. Given that you obviously have a strong math background, I don't think you'll have any issues with translating your 2D model of multi-epicyclic circles using basic trigonometry when porting to 3D.

Hope this helps in your decision making process on how to proceed with a 3D version of your program.

The method that I would suggest is as follows. Start with a parametrized path v(t) = (v_x(t), v_y(t), v_z(t)). Consider the following projection onto the X-Y plane: v1(t) = (v_x(t)/2, v_y(t), 0). And the corresponding projection onto the X-Z plane: v2(t) = (v_x(t)/2, 0, v_z(t)).

When we add these projections together we get the original curve. But each projection is now a closed 2-D curve, and you have solutions for arbitrary closed 2-D curves. So solve each problem. And then interleave them to get a projection where your first circle goes in the X-Y plane, your second one in the X-Z plane, your third one in the X-Y plane, your fourth one in the X-Z plane ... and they sum up to your answer!

发布评论

评论列表(0)

  1. 暂无评论