最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

deep learning - AutoEncoder Reconstruction error is not decreasing while training data increse - Stack Overflow

programmeradmin4浏览0评论

I'm using an AE to compress an 58 dimensional data into 8 dimension. I have used the same architect of AE with different number of data points. All the data points are independent to each other and selected randomly for training and validation but the test dataset is fixed with 1000 data points.

input_dim = data.shape[1]
encoding_dim = 8 
for i in [2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, data.shape[0]]:

train_data, val_data = train_test_split(data[:i][:], test_size=0.20, random_state=42)
# Encoder
input_layer = Input(shape=(input_dim,))
encoder_hidden1 = (Dense(64, activation='relu')(input_layer))
encoder_hidden1 = Dropout(0.2)(encoder_hidden1)
encoder_hidden2 = (Dense(32, activation='relu')(encoder_hidden1))
encoder_hidden2 = BatchNormalization()(encoder_hidden2)
encoder_hidden3 = (Dense(16, activation='relu')(encoder_hidden2))
encoder_hidden3 = BatchNormalization()(encoder_hidden3)
encoder_hidden4 = (Dense(8, activation='relu')(encoder_hidden3))
encoded = Dense(encoding_dim, activation='sigmoid', activity_regularizer=regularizers.l1(1e-6))(encoder_hidden4)

# Decoder
decoder_hidden1 = (Dense(8, activation='relu')(encoded))
decoder_hidden1 = BatchNormalization()(decoder_hidden1)
decoder_hidden2 = Dense(16, activation='relu')(decoder_hidden1)
decoder_hidden2 = BatchNormalization()(decoder_hidden2)
decoder_hidden3 = Dense(32, activation='relu')(decoder_hidden2)
decoder_hidden3 = BatchNormalization()(decoder_hidden3)
decoder_hidden4 = (Dense(64, activation='relu')(decoder_hidden3))
decoded = Dense(input_dim, activation='sigmoid')(decoder_hidden4)    
autoencoder = Model(input_layer, decoded)

 autoencoderpile(optimizer=Nadam(learning_rate=0.001), loss='mse',
                    metrics=[keras.metrics.RootMeanSquaredError(), 'mae', frechet_distance, ks_distance])

lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=20)

early_stopping = EarlyStopping(monitor='val_loss', patience=100, restore_best_weights=True)

history = autoencoder.fit(train_data, train_data,
                          epochs=5000, batch_size=64, shuffle=True,
                          validation_data=(val_data, val_data),
                          callbacks=[early_stopping, lr_scheduler])

encoder = Model(input_layer, encoded)
X_encoded = encoder.predict(test_data)



decoder_input = Input(shape=(encoding_dim,))
decoder_layer_1 = autoencoder.layers[-8]  # Dense(8)
decoder_layer_2 = autoencoder.layers[-7]  # BatchNormalization()
decoder_layer_3 = autoencoder.layers[-6]  # Dense(16)
decoder_layer_4 = autoencoder.layers[-5]  # BatchNormalization()
decoder_layer_5 = autoencoder.layers[-4]  # Dense(32)
decoder_layer_6 = autoencoder.layers[-3]  # BatchNormalization()
decoder_layer_7 = autoencoder.layers[-2]  # Dense(64)
decoder_layer_8 = autoencoder.layers[-1]  # Dense(input_dim)

decoder = Model(decoder_input,
                decoder_layer_8(decoder_layer_7(decoder_layer_6(
                    decoder_layer_5(
                        decoder_layer_4(decoder_layer_3(decoder_layer_2(decoder_layer_1(decoder_input)))))))))

X_reconstructed = decoder.predict(X_encoded)

test_mse_, test_root_mean_squared_error_, test_mae_, test_fre_, test_kl_ = autoencoder.evaluate(test_data,
                                                                                                test_data)

test_mae.append(test_mae_)
test_root_mean_squared_error.append(test_root_mean_squared_error_)
test_mse.append(test_mse_)
test_fre.append(test_fre_)
test_kl.append(test_kl_)

I am attaching the error diagram for the references.

发布评论

评论列表(0)

  1. 暂无评论