comment_list.inc': $pre .= $default_pre .= 'comment_list.inc.htm'; break; case 'message': $pre .= $default_pre .= 'message.htm'; break; case 'tag_list': $pre .= $default_pre .= 'tag_list.htm'; break; case 'tag': $pre .= $default_pre .= 'tag.htm'; break; case 'flag': $pre .= $default_pre .= 'flag.htm'; break; case 'my': $pre .= $default_pre .= 'my.htm'; break; case 'my_password': $pre .= $default_pre .= 'my_password.htm'; break; case 'my_bind': $pre .= $default_pre .= 'my_bind.htm'; break; case 'my_avatar': $pre .= $default_pre .= 'my_avatar.htm'; break; case 'home_article': $pre .= $default_pre .= 'home_article.htm'; break; case 'home_comment': $pre .= $default_pre .= 'home_comment.htm'; break; case 'user': $pre .= $default_pre .= 'user.htm'; break; case 'user_login': $pre .= $default_pre .= 'user_login.htm'; break; case 'user_create': $pre .= $default_pre .= 'user_create.htm'; break; case 'user_resetpw': $pre .= $default_pre .= 'user_resetpw.htm'; break; case 'user_resetpw_complete': $pre .= $default_pre .= 'user_resetpw_complete.htm'; break; case 'user_comment': $pre .= $default_pre .= 'user_comment.htm'; break; case 'single_page': $pre .= $default_pre .= 'single_page.htm'; break; case 'search': $pre .= $default_pre .= 'search.htm'; break; case 'operate_sticky': $pre .= $default_pre .= 'operate_sticky.htm'; break; case 'operate_close': $pre .= $default_pre .= 'operate_close.htm'; break; case 'operate_delete': $pre .= $default_pre .= 'operate_delete.htm'; break; case 'operate_move': $pre .= $default_pre .= 'operate_move.htm'; break; case '404': $pre .= $default_pre .= '404.htm'; break; case 'read_404': $pre .= $default_pre .= 'read_404.htm'; break; case 'list_404': $pre .= $default_pre .= 'list_404.htm'; break; default: $pre .= $default_pre .= theme_mode_pre(); break; } if ($config['theme']) { $conffile = APP_PATH . 'view/template/' . $config['theme'] . '/conf.json'; $json = is_file($conffile) ? xn_json_decode(file_get_contents($conffile)) : array(); } !empty($json['installed']) and $path_file = APP_PATH . 'view/template/' . $config['theme'] . '/htm/' . ($id ? $id . '_' : '') . $pre; (empty($path_file) || !is_file($path_file)) and $path_file = APP_PATH . 'view/template/' . $config['theme'] . '/htm/' . $pre; if (!empty($config['theme_child']) && is_array($config['theme_child'])) { foreach ($config['theme_child'] as $theme) { if (empty($theme) || is_array($theme)) continue; $path_file = APP_PATH . 'view/template/' . $theme . '/htm/' . ($id ? $id . '_' : '') . $pre; !is_file($path_file) and $path_file = APP_PATH . 'view/template/' . $theme . '/htm/' . $pre; } } !is_file($path_file) and $path_file = APP_PATH . ($dir ? 'plugin/' . $dir . '/view/htm/' : 'view/htm/') . $default_pre; return $path_file; } function theme_mode_pre($type = 0) { global $config; $mode = $config['setting']['website_mode']; $pre = ''; if (1 == $mode) { $pre .= 2 == $type ? 'portal_category.htm' : 'portal.htm'; } elseif (2 == $mode) { $pre .= 2 == $type ? 'flat_category.htm' : 'flat.htm'; } else { $pre .= 2 == $type ? 'index_category.htm' : 'index.htm'; } return $pre; } ?>gnn - Py Geometric - Use KNNGraph Transform on Dataset - Stack Overflow
最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

gnn - Py Geometric - Use KNNGraph Transform on Dataset - Stack Overflow

programmeradmin0浏览0评论

I have a dataframe representing a point cloud plus node data: I have hence X,Y,Z positions as well as "node features". I would like to represent it as a graph to use it in a GNN.

I would hence like to use the GNN transform in PyGeometric to extract edge connectivity info. An example in the docs can be found here.

I am not managing to get it to work, I think I need to represent my dataset as a torch_geometric.datasets.GeometricShapes object first?

This is what I tried

import pandas as pd
import numpy as np
import torch
from torch_geometric.data import Data, Dataset,InMemoryDataset
from torch_geometric.transforms import SamplePoints, KNNGraph
import torch_geometric.transforms as T
from torch_geometric.datasets import GeometricShapes

class CustomDataset(InMemoryDataset):
    def __init__(self, listOfDataObjects):
        super().__init__()
        self.data, self.slices = self.collate(listOfDataObjects)
    
    def __len__(self):
        return len(self.slices)
    
    def __getitem__(self, idx):
        sample = self.get(idx)
        return sample

## My data
data_fake = pd.DataFrame(data=np.random.rand(20,5), columns =['X','Y', 'Z','Node_feature_1', 'Node_feature_2'])

# Get a data object and then Dataset
my_fake_data = Data()
my_fake_data.pos =  torch.from_numpy(data_fake[['X','Y', 'Z']].values)
dataset_cloud = CustomDataset([my_fake_data])


# Transform
dataset_cloud.transform = T.Compose([SamplePoints(num=20), KNNGraph(k=5)])

alas, dataset_cloud[0] returns >>>Data(pos=[20, 3])

so no edge connectivity info for the nearest neighbours is added, as in the docs.

Any hints please? Thanks

EDIT

I think a workaround is not to use dataset.transforms and apply KNNGraph to the point cloud directly, as in

knn =KNNGraph(k=3)
data_knn = knn(dataset_cloud[0])

which return ad edge_index attribute as expected. Still would like to understand what goes wrong with the approach detailed above

发布评论

评论列表(0)

  1. 暂无评论