I am trying to fine-tune a language model using SFTTrainer from the trl library in Google Colab. However, I am encountering the following error:
TypeError Traceback (most recent call last)
<ipython-input-3-3a32b942f05f> in <cell line: 0>()
53
54
---> 55 trainer = SFTTrainer(
56 model=model,
57 train_dataset=data,
/usr/local/lib/python3.11/dist-packages/transformers/utils/deprecation.py in wrapped_func(*args, **kwargs)
170 warnings.warn(message, FutureWarning, stacklevel=2)
171
--> 172 return func(*args, **kwargs)
173
174 return wrapped_func
TypeError: SFTTrainer.__init__() got an unexpected keyword argument 'dataset_text_field'
Code:
import torch
from datasets import load_dataset, Dataset
from peft import LoraConfig, AutoPeftModelForCausalLM, prepare_model_for_kbit_training, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig, TrainingArguments
from trl import SFTTrainer
import os
# Load dataset
data = load_dataset("tatsu-lab/alpaca", split="train")
data_df = data.to_pandas()
data_df = data_df[:5000]
data_df["text"] = data_df[["input", "instruction", "output"]].apply(lambda x: "###Human: " + x["instruction"] + " " + x["input"] + " ###Assistant: "+ x["output"], axis=1)
data = Dataset.from_pandas(data_df)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
tokenizer.pad_token = tokenizer.eos_token
# Load model
quantization_config_loading = GPTQConfig(bits=4, disable_exllama=True, tokenizer=tokenizer)
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
quantization_config=quantization_config_loading,
device_map="auto"
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
# Apply LoRA configuration
peft_config = LoraConfig(
r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"]
)
model = get_peft_model(model, peft_config)
# Training arguments
training_arguments = TrainingArguments(
output_dir="mistral-finetuned-alpaca",
per_device_train_batch_size=8,
gradient_accumulation_steps=1,
optim="paged_adamw_32bit",
learning_rate=2e-4,
lr_scheduler_type="cosine",
save_strategy="epoch",
logging_steps=100,
num_train_epochs=1,
max_steps=250,
fp16=True,
push_to_hub=True
)
# Initialize Trainer
trainer = SFTTrainer(
model=model,
train_dataset=data,
peft_config=peft_config,
dataset_text_field="text", # This argument is causing the error
args=training_arguments,
tokenizer=tokenizer,
packing=False,
max_seq_length=512
)
trainer.train()
What I've tried:
- Checked the SFTTrainer documentation to verify if dataset_text_field is a valid argument.
- Ensured that trl is updated using pip install -U trl.
- Verified that dataset_text_field is used correctly for SFTTrainer.
Question:
- Is dataset_text_field deprecated or no longer needed in SFTTrainer?
- If so, how should I modify my code to correctly train the model using SFTTrainer?
I am trying to fine-tune a language model using SFTTrainer from the trl library in Google Colab. However, I am encountering the following error:
TypeError Traceback (most recent call last)
<ipython-input-3-3a32b942f05f> in <cell line: 0>()
53
54
---> 55 trainer = SFTTrainer(
56 model=model,
57 train_dataset=data,
/usr/local/lib/python3.11/dist-packages/transformers/utils/deprecation.py in wrapped_func(*args, **kwargs)
170 warnings.warn(message, FutureWarning, stacklevel=2)
171
--> 172 return func(*args, **kwargs)
173
174 return wrapped_func
TypeError: SFTTrainer.__init__() got an unexpected keyword argument 'dataset_text_field'
Code:
import torch
from datasets import load_dataset, Dataset
from peft import LoraConfig, AutoPeftModelForCausalLM, prepare_model_for_kbit_training, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig, TrainingArguments
from trl import SFTTrainer
import os
# Load dataset
data = load_dataset("tatsu-lab/alpaca", split="train")
data_df = data.to_pandas()
data_df = data_df[:5000]
data_df["text"] = data_df[["input", "instruction", "output"]].apply(lambda x: "###Human: " + x["instruction"] + " " + x["input"] + " ###Assistant: "+ x["output"], axis=1)
data = Dataset.from_pandas(data_df)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
tokenizer.pad_token = tokenizer.eos_token
# Load model
quantization_config_loading = GPTQConfig(bits=4, disable_exllama=True, tokenizer=tokenizer)
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
quantization_config=quantization_config_loading,
device_map="auto"
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
# Apply LoRA configuration
peft_config = LoraConfig(
r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"]
)
model = get_peft_model(model, peft_config)
# Training arguments
training_arguments = TrainingArguments(
output_dir="mistral-finetuned-alpaca",
per_device_train_batch_size=8,
gradient_accumulation_steps=1,
optim="paged_adamw_32bit",
learning_rate=2e-4,
lr_scheduler_type="cosine",
save_strategy="epoch",
logging_steps=100,
num_train_epochs=1,
max_steps=250,
fp16=True,
push_to_hub=True
)
# Initialize Trainer
trainer = SFTTrainer(
model=model,
train_dataset=data,
peft_config=peft_config,
dataset_text_field="text", # This argument is causing the error
args=training_arguments,
tokenizer=tokenizer,
packing=False,
max_seq_length=512
)
trainer.train()
What I've tried:
- Checked the SFTTrainer documentation to verify if dataset_text_field is a valid argument.
- Ensured that trl is updated using pip install -U trl.
- Verified that dataset_text_field is used correctly for SFTTrainer.
Question:
- Is dataset_text_field deprecated or no longer needed in SFTTrainer?
- If so, how should I modify my code to correctly train the model using SFTTrainer?
- What version of trl are you on? – Starship Remembers Shadow Commented Mar 14 at 18:22
1 Answer
Reset to default 2Based on this documentation, the below code should work (I added "##" where changes where made):
# Training arguments
training_arguments = SFTConfig( ##
output_dir="mistral-finetuned-alpaca",
per_device_train_batch_size=8,
gradient_accumulation_steps=1,
optim="paged_adamw_32bit",
learning_rate=2e-4,
lr_scheduler_type="cosine",
save_strategy="epoch",
logging_steps=100,
num_train_epochs=1,
max_steps=250,
fp16=True,
packing=False, ##
max_seq_length=512, ##
dataset_text_field="text", ##
push_to_hub=True
)
# Initialize Trainer
trainer = SFTTrainer(
model=model,
train_dataset=data,
peft_config=peft_config,
args=training_arguments,
tokenizer=tokenizer,
##
##
##
)
trainer.train()