I have dataframes that show the codes belonging to each ID.
import pandas as pd
data_group = {
'id': ['0111','0123'],
'code': [['1', '2', '3'],['1','2']]
}
df_group = pd.DataFrame(data_group)
and i have dataframes with ids and code and dates this is sample of dataframe
data = {
'codice': ['1', '2', '3', '1','1','1'],
'id': ['0111', '0111', '0111', '0111','0123','0123'],
'data1': ['2025-02-03 02:16:00', '2025-02-03 02:18:00', '2025-02-03 02:17:00', '2025-02-03 12:02:00','2025-02-03 12:02:00','2025-02-03 12:02:00'],
'data2': ['2025-02-03 02:44:00', '2025-02-03 02:44:00', '2025-02-03 02:39:00', '2025-02-03 12:05:00','2025-02-03 12:06:00','2025-02-03 12:04:00']
}
df = pd.DataFrame(data)
I want to identify the overlapping date ranges within the entire group of code IDs and return the common date ranges.(ex: for '0111' common range of date between codes 1,2,3 not just 2,3 or 1,2) the result that i want is :
result = {
'id' :['0111'],
'data1': ['2025-02-03 02:18:00'],
'data2': ['2025-02-03 02:39:00']
I have dataframes that show the codes belonging to each ID.
import pandas as pd
data_group = {
'id': ['0111','0123'],
'code': [['1', '2', '3'],['1','2']]
}
df_group = pd.DataFrame(data_group)
and i have dataframes with ids and code and dates this is sample of dataframe
data = {
'codice': ['1', '2', '3', '1','1','1'],
'id': ['0111', '0111', '0111', '0111','0123','0123'],
'data1': ['2025-02-03 02:16:00', '2025-02-03 02:18:00', '2025-02-03 02:17:00', '2025-02-03 12:02:00','2025-02-03 12:02:00','2025-02-03 12:02:00'],
'data2': ['2025-02-03 02:44:00', '2025-02-03 02:44:00', '2025-02-03 02:39:00', '2025-02-03 12:05:00','2025-02-03 12:06:00','2025-02-03 12:04:00']
}
df = pd.DataFrame(data)
I want to identify the overlapping date ranges within the entire group of code IDs and return the common date ranges.(ex: for '0111' common range of date between codes 1,2,3 not just 2,3 or 1,2) the result that i want is :
result = {
'id' :['0111'],
'data1': ['2025-02-03 02:18:00'],
'data2': ['2025-02-03 02:39:00']
Share
Improve this question
edited Mar 24 at 15:04
mozway
264k13 gold badges50 silver badges98 bronze badges
asked Mar 24 at 14:38
so.nso.n
1266 bronze badges
5
|
1 Answer
Reset to default 0The logic is not fully clear to me, but assuming your intervals are overlapping, that date1 is the start and date2 the end, and you want the max/min, you can perform a groupby.agg
, then filter the rows based on df_group
:
# convert to datetime
df[['data1', 'data2']] = df[['data1', 'data2']].apply(pd.to_datetime)
# sort the values, identify overlapping dates
# form a new group, get the minimal interval
(df
.sort_values(by=['id', 'data1', 'data2'])
.assign(n=lambda x: x['data1'].gt(x['data2'].shift()).groupby(x['id']).cumsum())
.groupby(['id', 'n'], as_index=False)
.agg({'data1': 'max', 'data2': 'min', 'codice': set})
# filter the groups that are complete based on "df_group"
.loc[lambda x: x['id'].map(df_group.set_index('id')['code'].apply(set))
.eq(x['codice'])
]
)
Output:
id n data1 data2 codice
0 0111 0 2025-02-03 02:18:00 2025-02-03 02:43:00 {1, 3, 2}
For a dictionary, add:
out.set_index('id')[['data1', 'data2']].astype(str).T.to_dict()
Output:
{'0111': {'data1': '2025-02-03 02:18:00', 'data2': '2025-02-03 02:43:00'}}
data
constructor is invalid. – mozway Commented Mar 24 at 14:442025-02-03 12:02:00
as the beginning of the range – mozway Commented Mar 24 at 14:51