ter = array_value($config, 'filter'); $arr = array_value($filter, $type); $enable = array_value($arr, 'enable'); $wordarr = array_value($arr, 'keyword'); if (0 == $enable || empty($wordarr)) return FALSE; foreach ($wordarr as $_keyword) { if (!$_keyword) continue; $r = strpos(strtolower($keyword), strtolower($_keyword)); if (FALSE !== $r) { $error = $_keyword; return TRUE; } } return FALSE; } // return http://domain.com OR https://domain.com function url_prefix() { $http = ((isset($_SERVER['HTTPS']) && 'on' == $_SERVER['HTTPS']) || (isset($_SERVER['HTTP_X_FORWARDED_PROTO']) && $_SERVER['HTTP_X_FORWARDED_PROTO'] == 'https')) ? 'https://' : 'http://'; return $http . $_SERVER['HTTP_HOST']; } // 唯一身份ID function uniq_id() { return uniqid(substr(md5(microtime(true) . mt_rand(1000, 9999)), 8, 8)); } // 生成订单号 14位 function trade_no() { $trade_no = str_replace('.', '', microtime(1)); $strlen = mb_strlen($trade_no, 'UTF-8'); $strlen = 14 - $strlen; $str = ''; if ($strlen) { for ($i = 0; $i <= $strlen; $i++) { if ($i < $strlen) $str .= '0'; } } return $trade_no . $str; } // 生成订单号 16位 function trade_no_16() { $explode = explode(' ', microtime()); $trade_no = $explode[1] . mb_substr($explode[0], 2, 6, 'UTF-8'); return $trade_no; } // 当前年的天数 function date_year($time = NULL) { $time = intval($time) ? $time : time(); return date('L', $time) + 365; } // 当前年份中的第几天 function date_z($time = NULL) { $time = intval($time) ? $time : time(); return date('z', $time); } // 当前月份中的第几天,没有前导零 1 到 31 function date_j($time = NULL) { $time = intval($time) ? $time : time(); return date('j', $time); } // 当前月份中的第几天,有前导零的2位数字 01 到 31 function date_d($time = NULL) { $time = intval($time) ? $time : time(); return date('d', $time); } // 当前时间为星期中的第几天 数字表示 1表示星期一 到 7表示星期天 function date_w_n($time = NULL) { $time = intval($time) ? $time : time(); return date('N', $time); } // 当前日第几周 function date_d_w($time = NULL) { $time = intval($time) ? $time : time(); return date('W', $time); } // 当前几月 没有前导零1-12 function date_n($time = NULL) { $time = intval($time) ? $time : time(); return date('n', $time); } // 当前月的天数 function date_t($time = NULL) { $time = intval($time) ? $time : time(); return date('t', $time); } // 0 o'clock on the day function clock_zero() { return strtotime(date('Ymd')); } // 24 o'clock on the day function clock_twenty_four() { return strtotime(date('Ymd')) + 86400; } // 8点过期 / expired at 8 a.m. function eight_expired($time = NULL) { $time = intval($time) ? $time : time(); // 当前时间大于8点则改为第二天8点过期 $life = date('G') <= 8 ? (strtotime(date('Ymd')) + 28800 - $time) : clock_twenty_four() - $time + 28800; return $life; } // 24点过期 / expired at 24 a.m. function twenty_four_expired($time = NULL) { $time = intval($time) ? $time : time(); $twenty_four = clock_twenty_four(); $life = $twenty_four - $time; return $life; } /** * @param $url 提交地址 * @param string $post POST数组 / 空为GET获取数据 / $post='GET'获取连续跳转最终URL * @param string $cookie cookie * @param int $timeout 超时 * @param int $ms 设为1是毫秒 * @return mixed 返回数据 */ function https_request($url, $post = '', $cookie = '', $timeout = 30, $ms = 0) { if (empty($url)) return FALSE; if (version_compare(PHP_VERSION, '5.2.3', '<')) { $ms = 0; $timeout = 30; } is_array($post) and $post = http_build_query($post); // 没有安装curl 使用http的形式,支持post if (!extension_loaded('curl')) { //throw new Exception('server not install CURL'); if ($post) { return https_post($url, $post, $cookie, $timeout); } else { return http_get($url, $cookie, $timeout); } } is_array($cookie) and $cookie = http_build_query($cookie); $curl = curl_init(); // 返回执行结果,不输出 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true); //php5.5跟php5.6中的CURLOPT_SAFE_UPLOAD的默认值不同 if (class_exists('\CURLFile')) { curl_setopt($curl, CURLOPT_SAFE_UPLOAD, true); } else { defined('CURLOPT_SAFE_UPLOAD') and curl_setopt($curl, CURLOPT_SAFE_UPLOAD, false); } // 设定请求的RUL curl_setopt($curl, CURLOPT_URL, $url); // 设定返回信息中包含响应信息头 if (ini_get('safe_mode') && ini_get('open_basedir')) { // $post参数必须为GET if ('GET' == $post) { // 安全模式时将头文件的信息作为数据流输出 curl_setopt($curl, CURLOPT_HEADER, true); // 安全模式采用连续抓取 curl_setopt($curl, CURLOPT_NOBODY, true); } } else { curl_setopt($curl, CURLOPT_HEADER, false); // 允许跳转10次 curl_setopt($curl, CURLOPT_MAXREDIRS, 10); // 使用自动跳转,返回最后的Location curl_setopt($curl, CURLOPT_FOLLOWLOCATION, true); } $ua1 = 'Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1'; $ua = empty($_SERVER["HTTP_USER_AGENT"]) ? $ua1 : $_SERVER["HTTP_USER_AGENT"]; curl_setopt($curl, CURLOPT_USERAGENT, $ua); // 兼容HTTPS if (FALSE !== stripos($url, 'https://')) { curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, FALSE); curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, FALSE); //ssl版本控制 //curl_setopt($curl, CURLOPT_SSLVERSION, CURL_SSLVERSION_TLSv1); curl_setopt($curl, CURLOPT_SSLVERSION, true); } $header = array('Content-type: application/x-www-form-urlencoded;charset=UTF-8', 'X-Requested-With: XMLHttpRequest'); $cookie and $header[] = "Cookie: $cookie"; curl_setopt($curl, CURLOPT_HTTPHEADER, $header); if ($post) { // POST curl_setopt($curl, CURLOPT_POST, true); // 自动设置Referer curl_setopt($curl, CURLOPT_AUTOREFERER, true); curl_setopt($curl, CURLOPT_POSTFIELDS, $post); } if ($ms) { curl_setopt($curl, CURLOPT_NOSIGNAL, true); // 设置毫秒超时 curl_setopt($curl, CURLOPT_TIMEOUT_MS, intval($timeout)); // 超时毫秒 } else { curl_setopt($curl, CURLOPT_TIMEOUT, intval($timeout)); // 秒超时 } //优先解析 IPv6 超时后IPv4 //curl_setopt($curl, CURLOPT_IPRESOLVE, CURL_IPRESOLVE_V4); curl_setopt($curl, CURLOPT_ENCODING, 'gzip'); // 返回执行结果 $output = curl_exec($curl); // 有效URL,输出URL非URL页面内容 CURLOPT_RETURNTRANSFER 必须为false 'GET' == $post and $output = curl_getinfo($curl, CURLINFO_EFFECTIVE_URL); curl_close($curl); return $output; } function save_image($img) { $ch = curl_init(); // 设定请求的RUL curl_setopt($ch, CURLOPT_URL, $img); // 设定返回信息中包含响应信息头 启用时会将头文件的信息作为数据流输出 //curl_setopt($ch, CURLOPT_HEADER, false); //curl_setopt($ch, CURLOPT_USERAGENT, $_SERVER["HTTP_USER_AGENT"]); // true表示$html,false表示echo $html curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 10); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); //curl_setopt($ch, CURLOPT_BINARYTRANSFER, 1); //curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 0); curl_setopt($ch, CURLOPT_ENCODING, 'gzip'); $output = curl_exec($ch); curl_close($ch); return $output; } // 计算字串宽度:剧中对齐(字体大小/字串内容/字体链接/背景宽度/倍数) function calculate_str_width($size, $str, $font, $width, $multiple = 2) { $box = imagettfbbox($size, 0, $font, $str); return ($width - $box[4] - $box[6]) / $multiple; } // 搜索目录下的文件 比对文件后缀 function search_directory($path) { if (is_dir($path)) { $paths = scandir($path); foreach ($paths as $val) { $sub_path = $path . '/' . $val; if ('.' == $val || '..' == $val) { continue; } else if (is_dir($sub_path)) { //echo '目录名:' . $val . '
'; search_directory($sub_path); } else { //echo ' 最底层文件: ' . $path . '/' . $val . '
'; $ext = strtolower(file_ext($sub_path)); if (in_array($ext, array('php', 'asp', 'jsp', 'cgi', 'exe', 'dll'), TRUE)) { echo '异常文件:' . $sub_path . '
'; } } } } } // 一维数组转字符串 $sign待签名字符串 $url为urlencode转码GET参数字符串 function array_to_string($arr, &$sign = '', &$url = '') { if (count($arr) != count($arr, 1)) throw new Exception('Does not support multi-dimensional array to string'); // 注销签名 unset($arr['sign']); // 排序 ksort($arr); reset($arr); // 转字符串做签名 $url = ''; $sign = ''; foreach ($arr as $key => $val) { if (empty($val) || is_array($val)) continue; $url .= $key . '=' . urlencode($val) . '&'; $sign .= $key . '=' . $val . '&'; } $url = substr($url, 0, -1); $url = htmlspecialchars($url); $sign = substr($sign, 0, -1); } // 私钥生成签名 function rsa_create_sign($data, $key, $sign_type = 'RSA') { if (!function_exists('openssl_sign')) throw new Exception('OpenSSL extension is not enabled'); if (!defined('OPENSSL_ALGO_SHA256')) throw new Exception('Only versions above PHP 5.4.8 support SHA256'); $key = wordwrap($key, 64, "\n", true); if (FALSE === $key) throw new Exception('Private Key Error'); $key = "-----BEGIN RSA PRIVATE KEY-----\n$key\n-----END RSA PRIVATE KEY-----"; if ('RSA2' == $sign_type) { openssl_sign($data, $sign, $key, OPENSSL_ALGO_SHA256); } else { openssl_sign($data, $sign, $key, OPENSSL_ALGO_SHA1); } // 加密 return base64_encode($sign); } // 公钥验证签名 function rsa_verify_sign($data, $sign, $key, $sign_type = 'RSA') { $key = wordwrap($key, 64, "\n", true); if (FALSE === $key) throw new Exception('Public Key Error'); $key = "-----BEGIN PUBLIC KEY-----\n$key\n-----END PUBLIC KEY-----"; // 签名正确返回1 签名不正确返回0 错误-1 if ('RSA2' == $sign_type) { $result = openssl_verify($data, base64_decode($sign), $key, OPENSSL_ALGO_SHA256); } else { $result = openssl_verify($data, base64_decode($sign), $key, OPENSSL_ALGO_SHA1); } return $result === 1; } // Array to xml array('appid' => 'appid', 'code' => 'success') function array_to_xml($arr) { if (!is_array($arr) || empty($arr)) throw new Exception('Array Error'); $xml = ""; foreach ($arr as $key => $val) { if (is_numeric($val)) { $xml .= "<" . $key . ">" . $val . ""; } else { $xml .= "<" . $key . ">"; } } $xml .= ""; return $xml; } // Xml to array function xml_to_array($xml) { if (!$xml) throw new Exception('XML error'); $old = libxml_disable_entity_loader(true); // xml解析 $result = (array)simplexml_load_string($xml, null, LIBXML_NOCDATA | LIBXML_COMPACT); // 恢复旧值 if (FALSE === $old) libxml_disable_entity_loader(false); return $result; } // 逐行读取 function well_import($file) { if ($handle = fopen($file, 'r')) { while (!feof($handle)) { yield trim(fgets($handle)); } fclose($handle); } } // 计算总行数 function well_import_total($file, $key = 'well_import_total') { static $cache = array(); if (isset($cache[$key])) return $cache[$key]; $count = cache_get($key); if (NULL === $count) { $count = 0; $globs = well_import($file); while ($globs->valid()) { ++$count; $globs->next(); // 指向下一个 } $count and cache_set($key, $count, 300); } return $cache[$key] = $count; } $g_dir_file = FALSE; function well_search_dir($path) { global $g_dir_file; FALSE === $g_dir_file and $g_dir_file = array(); if (is_dir($path)) { $paths = scandir($path); foreach ($paths as $val) { $sub_path = $path . '/' . $val; if ('.' == $val || '..' == $val) { continue; } else if (is_dir($sub_path)) { well_search_dir($sub_path); } else { $g_dir_file[] = $sub_path; } } } return $g_dir_file; } ?>python - Docplex and callback problems - Stack Overflow
最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

python - Docplex and callback problems - Stack Overflow

programmeradmin1浏览0评论

I’m trying to implement a custom callback that solves a subproblem during the optimization process. I want to:

  1. Get the values of certain variables from the main model's solution.

  2. Solve a subproblem (a separate optimization problem) based on these values.

  3. If the subproblem solution suggests a cut, add it to the main model as a new constraint.

I'll share my code here, i really wanted to do it in python but im so lost right now, ive been trying also xpress and similar but documentation is useless, any help would be greatly appreciated.

from docplex.mp.model import Model
from cplex.callbacks import UserCutCallback
from docplex.mp.callbacks.cb_mixin import ConstraintCallbackMixin
import random

class CustomCutCallback(ConstraintCallbackMixin, UserCutCallback):
    def __init__(self, env):
        UserCutCallback.__init__(self, env)
        ConstraintCallbackMixin.__init__(self)
        self.eps = 1e-6
        self.nb_cuts = 0
        self.cts = []

    def add_cut_constraint(self, cut):
        self.register_constraint(cut)

    def __call__(self, context):
        """
        This method is invoked by CPLEX during optimization.
        It receives the 'context' to interact with the model and variables.
        """
        print("Callback called with context")
        m = context.model  # The main model from the context
        m_sol = m.solution

        x_values = {var: m_sol.get_value(var) for var in m.variables if var.name.startswith('x')}
        w_values = {var: m_sol.get_value(var) for var in m.variables if var.name.startswith('w')}
        m2_cuts = self.solve_subproblem(x_values, w_values, m, context)

    def solve_subproblem(self, x_values, w_values, m, context):
        """
        Solves the subproblem and generates cuts if necessary.
        """
        m2 = Model(name='subproblem')

        client_range = range(len(x_values))
        deposit_range = range(len(w_values))
        plant_range = range(len(w_values[0]))

        alpha = m2.continuous_var_matrix(client_range, deposit_range, name='alpha', lb=0)
        beta = m2.continuous_var_matrix(deposit_range, plant_range, name='beta', lb=0)

        m2.add_constraints(alpha[i, j] + (x_values.get((i, j), 0) * beta[j, k]) <= x_values.get((i, j), 0) * w_values.get((j, k), 0)
                           for i in client_range for j in deposit_range for k in plant_range)

        m2.maximize(m2.sum(alpha[i, j] * x_values.get((i, j), 0) for i in client_range for j in deposit_range) + 
                    m2.sum(beta[j, k] * w_values.get((j, k), 0) for j in deposit_range for k in plant_range))

        m2.solve()
        print(m2.solution)

        # Here, you perform an evaluation of the cut values
        for i in client_range:
            for j in deposit_range:
                for k in plant_range:
                    if  sum(m2.solution.get_value(alpha[i, j]) * x_values.get((i, j), 0) for i in client_range for j in deposit_range) + \
                    sum(m2.solution.get_value(beta[j, k]) * w_values.get((j, k), 0) for j in deposit_range for k in plant_range) > \
                    sum(transport_cost_deposit_client[j][i] * d[i] * x[i, j] for i in client_range for j in deposit_range) + \
                    sum(transport_cost_plant_deposit[j][k] * w[j, k] for j in deposit_range for k in plant_range):
                        m.add_constraint(sum(m2.solution.get_value(alpha[i, j]) * x[i, j] for i in client_range for j in deposit_range) + \
                                         sum(m2.solution.get_value(beta[j, k]) * w[j, k] for j in deposit_range for k in plant_range))


# Main model
def build_location_model(transport_cost_deposit_client, transport_cost_plant_deposit, p, q, d, **kwargs):
    m = Model(name='location', **kwargs)

    num_deposits = len(transport_cost_deposit_client)
    num_plants = len(transport_cost_plant_deposit[0])
    num_clients = len(d)
    
    deposit_range = range(num_deposits)
    plant_range = range(num_plants)
    client_range = range(num_clients)

    x = m.binary_var_matrix(client_range, deposit_range, name='x')
    w = m.integer_var_matrix(deposit_range, plant_range, name='w', lb=0)
    y = m.binary_var_list(deposit_range, name='y')
    h = m.binary_var_list(plant_range, name='h')

    m.add_constraints(m.sum(x[i, j] for j in deposit_range) == 1 for i in client_range)
    m.add_constraints(m.sum(w[j, k] for k in plant_range) == y[j] for j in deposit_range)
    m.add_constraints(x[i, j] <= y[j] for i in client_range for j in deposit_range)
    m.add_constraint(m.sum(h[k] for k in plant_range) == q)
    m.add_constraint(m.sum(y[j] for j in deposit_range) == p)
    m.add_constraints(m.sum(d[i] * x[i,j] for i in client_range) == m.sum(w[j, k] for k in plant_range) for j in deposit_range)
    m.add_constraints(w[j, k] <= (m.sum(d[i] for i in client_range) * h[k]) for j in deposit_range for k in plant_range)

    transport_cost = m.sum(transport_cost_deposit_client[j][i] * d[i] * x[i, j] for i in client_range for j in deposit_range) + \
                        m.sum(transport_cost_plant_deposit[j][k] * w[j, k] for j in deposit_range for k in plant_range)
    m.minimize(transport_cost)
    m.parameters.preprocessing.presolve = 0

    # Register the callback
    cut_cb = m.register_callback(CustomCutCallback)

    # Configure CPLEX parameters for cuts
    params = m.parameters
    params.mip.cuts.mircut = -1

    m.solve()

    return m



# Test function
def solve_model():
    num_deposits = 10
    num_plants = 4
    num_clients = 20

    TRANSPORT_COST_DEPOSITS_CLIENTS = [
        [random.randint(20, 100) for _ in range(num_clients)] for _ in range(num_deposits)
    ]

    TRANSPORT_COST_PLANTS_DEPOSITS = [
        [random.randint(30, 80) for _ in range(num_plants)] for _ in range(num_deposits)
    ]

    p = 5
    q = 3
    d = [random.randint(5, 20) for _ in range(num_clients)]

    m = build_location_model(TRANSPORT_COST_DEPOSITS_CLIENTS, TRANSPORT_COST_PLANTS_DEPOSITS, p, q, d)
    if m.solution is None:
        print("No valid solution found.")
        return None
    print(m.solution)
    return m


if __name__ == "__main__":
    solve_model()

I’m trying to implement a custom callback that solves a subproblem during the optimization process. I want to:

  1. Get the values of certain variables from the main model's solution.

  2. Solve a subproblem (a separate optimization problem) based on these values.

  3. If the subproblem solution suggests a cut, add it to the main model as a new constraint.

I'll share my code here, i really wanted to do it in python but im so lost right now, ive been trying also xpress and similar but documentation is useless, any help would be greatly appreciated.

from docplex.mp.model import Model
from cplex.callbacks import UserCutCallback
from docplex.mp.callbacks.cb_mixin import ConstraintCallbackMixin
import random

class CustomCutCallback(ConstraintCallbackMixin, UserCutCallback):
    def __init__(self, env):
        UserCutCallback.__init__(self, env)
        ConstraintCallbackMixin.__init__(self)
        self.eps = 1e-6
        self.nb_cuts = 0
        self.cts = []

    def add_cut_constraint(self, cut):
        self.register_constraint(cut)

    def __call__(self, context):
        """
        This method is invoked by CPLEX during optimization.
        It receives the 'context' to interact with the model and variables.
        """
        print("Callback called with context")
        m = context.model  # The main model from the context
        m_sol = m.solution

        x_values = {var: m_sol.get_value(var) for var in m.variables if var.name.startswith('x')}
        w_values = {var: m_sol.get_value(var) for var in m.variables if var.name.startswith('w')}
        m2_cuts = self.solve_subproblem(x_values, w_values, m, context)

    def solve_subproblem(self, x_values, w_values, m, context):
        """
        Solves the subproblem and generates cuts if necessary.
        """
        m2 = Model(name='subproblem')

        client_range = range(len(x_values))
        deposit_range = range(len(w_values))
        plant_range = range(len(w_values[0]))

        alpha = m2.continuous_var_matrix(client_range, deposit_range, name='alpha', lb=0)
        beta = m2.continuous_var_matrix(deposit_range, plant_range, name='beta', lb=0)

        m2.add_constraints(alpha[i, j] + (x_values.get((i, j), 0) * beta[j, k]) <= x_values.get((i, j), 0) * w_values.get((j, k), 0)
                           for i in client_range for j in deposit_range for k in plant_range)

        m2.maximize(m2.sum(alpha[i, j] * x_values.get((i, j), 0) for i in client_range for j in deposit_range) + 
                    m2.sum(beta[j, k] * w_values.get((j, k), 0) for j in deposit_range for k in plant_range))

        m2.solve()
        print(m2.solution)

        # Here, you perform an evaluation of the cut values
        for i in client_range:
            for j in deposit_range:
                for k in plant_range:
                    if  sum(m2.solution.get_value(alpha[i, j]) * x_values.get((i, j), 0) for i in client_range for j in deposit_range) + \
                    sum(m2.solution.get_value(beta[j, k]) * w_values.get((j, k), 0) for j in deposit_range for k in plant_range) > \
                    sum(transport_cost_deposit_client[j][i] * d[i] * x[i, j] for i in client_range for j in deposit_range) + \
                    sum(transport_cost_plant_deposit[j][k] * w[j, k] for j in deposit_range for k in plant_range):
                        m.add_constraint(sum(m2.solution.get_value(alpha[i, j]) * x[i, j] for i in client_range for j in deposit_range) + \
                                         sum(m2.solution.get_value(beta[j, k]) * w[j, k] for j in deposit_range for k in plant_range))


# Main model
def build_location_model(transport_cost_deposit_client, transport_cost_plant_deposit, p, q, d, **kwargs):
    m = Model(name='location', **kwargs)

    num_deposits = len(transport_cost_deposit_client)
    num_plants = len(transport_cost_plant_deposit[0])
    num_clients = len(d)
    
    deposit_range = range(num_deposits)
    plant_range = range(num_plants)
    client_range = range(num_clients)

    x = m.binary_var_matrix(client_range, deposit_range, name='x')
    w = m.integer_var_matrix(deposit_range, plant_range, name='w', lb=0)
    y = m.binary_var_list(deposit_range, name='y')
    h = m.binary_var_list(plant_range, name='h')

    m.add_constraints(m.sum(x[i, j] for j in deposit_range) == 1 for i in client_range)
    m.add_constraints(m.sum(w[j, k] for k in plant_range) == y[j] for j in deposit_range)
    m.add_constraints(x[i, j] <= y[j] for i in client_range for j in deposit_range)
    m.add_constraint(m.sum(h[k] for k in plant_range) == q)
    m.add_constraint(m.sum(y[j] for j in deposit_range) == p)
    m.add_constraints(m.sum(d[i] * x[i,j] for i in client_range) == m.sum(w[j, k] for k in plant_range) for j in deposit_range)
    m.add_constraints(w[j, k] <= (m.sum(d[i] for i in client_range) * h[k]) for j in deposit_range for k in plant_range)

    transport_cost = m.sum(transport_cost_deposit_client[j][i] * d[i] * x[i, j] for i in client_range for j in deposit_range) + \
                        m.sum(transport_cost_plant_deposit[j][k] * w[j, k] for j in deposit_range for k in plant_range)
    m.minimize(transport_cost)
    m.parameters.preprocessing.presolve = 0

    # Register the callback
    cut_cb = m.register_callback(CustomCutCallback)

    # Configure CPLEX parameters for cuts
    params = m.parameters
    params.mip.cuts.mircut = -1

    m.solve()

    return m



# Test function
def solve_model():
    num_deposits = 10
    num_plants = 4
    num_clients = 20

    TRANSPORT_COST_DEPOSITS_CLIENTS = [
        [random.randint(20, 100) for _ in range(num_clients)] for _ in range(num_deposits)
    ]

    TRANSPORT_COST_PLANTS_DEPOSITS = [
        [random.randint(30, 80) for _ in range(num_plants)] for _ in range(num_deposits)
    ]

    p = 5
    q = 3
    d = [random.randint(5, 20) for _ in range(num_clients)]

    m = build_location_model(TRANSPORT_COST_DEPOSITS_CLIENTS, TRANSPORT_COST_PLANTS_DEPOSITS, p, q, d)
    if m.solution is None:
        print("No valid solution found.")
        return None
    print(m.solution)
    return m


if __name__ == "__main__":
    solve_model()
Share Improve this question asked Mar 29 at 19:13 JavierJavier 31 bronze badge 2
  • Could you give some additional info on which issues you encounter, what your expected output would look like etc.? Thanks! – Cleb Commented Mar 30 at 4:30
  • Hello I am trying to solve the problem by adding constraints based on the solution of the subproblem that I defined in the callback for each of the nodes in the branching tree. The problem is that it doesn't enter the callback, and I think I am not defining and solving the subproblem properly. Also, I'm not sure how to add the constraints to the original problem using the values from the subproblem's solution. Also there is one constraint that must be commented: m.add_constraints(m.sum(d[i] * x[i,j] for i in client_range) == m.sum(w[j, k] for k in plant_range) for j in deposit_range) THANKS – Javier Commented Mar 30 at 14:56
Add a comment  | 

1 Answer 1

Reset to default 1

Your basic model ("location") is infeasible. I ran your code with output on solve(log_output=True)

and it stops at once as infeasible. Hence the callback is never called. I suggest you modify the code to start from a feasible model, and then add the callbacks.

Here is the output I of the solve:

C:\python\anaconda202210\envs\docplex_dev38\python.exe C:\OPTIM\PYLAB\stackov\cutcb.py 
Model: location
 - number of variables: 254
   - binary=214, integer=40, continuous=0
 - number of constraints: 282
   - linear=282
 - parameters:
     parameters.mip.cuts.mircut = -1
     parameters.preprocessing.presolve = 0
 - objective: minimize
 - problem type is: MILP
Version identifier: 20.1.0.0 | 2020-11-10 | 9bedb6d68
CPXPARAM_Preprocessing_Presolve                  0
CPXPARAM_Read_DataCheck                          1
CPXPARAM_MIP_Cuts_MIRCut                         -1
Legacy callback                                  UD
Warning: Control callbacks may disable some MIP features.
Clique table members: 211.
MIP emphasis: balance optimality and feasibility.
MIP search method: traditional branch-and-cut.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.00 sec. (0.23 ticks)

        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap         Variable B NodeID Parent  Depth

      0     0    infeasible                                          2         

Root node processing (before b&c):
  Real time             =    0.00 sec. (1.57 ticks)
Sequential b&c:
  Real time             =    0.00 sec. (0.00 ticks)
                          ------------
Total (root+branch&cut) =    0.00 sec. (1.57 ticks)
No valid solution found.

Process finished with exit code 0
发布评论

评论列表(0)

  1. 暂无评论