How can I convert a TensorFlow model on Kaggle to ONNX format? Or How can I generate a model in TensorFlow Lite format with fixed shape such as batch_size?
I am trying to convert biggan, distributed at the URL below, to ONNX format in order to use it in an embedded environment.
When I perform the following operation, the following error message is output. How can I convert it to ONNX format? Ultimately, I would like to convert to a tflite model with the input shape batch_size fixed to 1. I will convert to ONNX with tf2onnx, set batch_size to 1 in ONNX, then run onnx2tf to write out the TensorFlow Lite format.
### create conda environment
$ conda create -n biggan_convert python=3.10
$ conda activate biggan_convert
$ pip install tensorflow==2.9 tf_keras==2.14.1 numpy==1.26.4 onnx onnxruntime onnx2tf==1.26.9 onnx_graphsurgeon psutil sng4onnx tf2onnx==1.13.0
$ conda install six
$ conda install requests
### download model from kaggle
$ curl -L -o ~/Downloads/model.tar.gz\
### expand
$ mkdir saved_model
$ tar zxvf ~/Downloads/model.tar.gz -C saved_model
$ ls saved_model/
saved_model.pb tfhub_module.pb variables
### convert to onnx
$ python3 -m tf2onnx.convert --saved-model saved_model --output biggan
.onnx
...
RuntimeError: MetaGraphDef associated with tags 'serve' could not be found in SavedModel, with available tags '[set()]'. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`.
$ saved_model_cli show --dir ./saved_model --all
2025-04-01 17:23:14.550812: I tensorflow/core/util/util:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-04-01 17:23:14.552998: W tensorflow/stream_executor/platform/default/dso_loader:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda/lib64:
2025-04-01 17:23:14.553009: I tensorflow/stream_executor/cuda/cudart_stub:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
MetaGraphDef with tag-set: '' contains the following SignatureDefs:
signature_def['default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['truncation'] tensor_info:
dtype: DT_FLOAT
shape: ()
name: truncation:0
inputs['y'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1000)
name: y:0
inputs['z'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 120)
name: z:0
The given SavedModel SignatureDef contains the following output(s):
outputs['default'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 128, 128, 3)
name: G_trunc_output:0
Method name is: