I am currently developing a shinyapp for rastercalculations similarly like:
I am developing it to run on a high performance cluster because I want to parallize the calculation of vegetation indices. On my PC it's working totaly fine. Here is the code snippet which is causing the error:
p <- wrap(values$raster_rgb)
# Set up parallel backend
plan(multisession, workers = input$numCores) # Use multiple cores
# Parallel processing of raster indices
raster_indices_rgb <- future_lapply(input$rgbIndices, function(idx) {
idx_eq <- indices_equations$eq[indices_equations$index == idx]
# Create function dynamically
eval(parse(text = paste0(idx, " <- function(Red, Green, Blue, Alpha) { return(", idx_eq, ") }")))
# Process raster tiles
x <- unwrap(p)
raster_idx <- lapp(x, get(idx), usenames = TRUE)
names(raster_idx) <- idx
return(setNames(list(raster_idx), idx))
})
# Combine results into a named list
raster_indices_rgb <- unlist(raster_indices_rgb, recursive = FALSE)
if(length(raster_indices_rgb) > 0) {
raster_indices_rgb <- rast(raster_indices_rgb)
raster_no_soil_indices_rgb <- terra::mask(raster_indices_rgb, values$mask)
values$indices_rgb_per_plot_without_soil <- exact_extract(raster_no_soil_indices_rgb, values$shape_file, fun = 'mean')
#If only one vector is slected colnames does not work therefore this ifstatement:
if (length(raster_indices_rgb) == 1){
values$indices_rgb_per_plot_without_soil <- as.data.frame(values$indices_rgb_per_plot_without_soil)
colnames(values$indices_rgb_per_plot_without_soil) <- input$rgbIndices
}
colnames(values$indices_rgb_per_plot_without_soil) <- paste(colnames(values$indices_rgb_per_plot_without_soil), "without_soil", sep = "_")
values$indices_rgb_per_plot_with_soil <- exact_extract(raster_indices_rgb, values$shape_file, fun = 'mean')
#If only one vector is slected colnames does not work therefore this ifstatement:
if (length(raster_indices_rgb) == 1){
values$indices_rgb_per_plot_with_soil <- as.data.frame(values$indices_rgb_per_plot_with_soil)
colnames(values$indices_rgb_per_plot_with_soil) <- input$rgbIndices
}
colnames(values$indices_rgb_per_plot_with_soil) <- paste(colnames(values$indices_rgb_per_plot_with_soil), "with_soil", sep = "_")
}
}
plan(sequential)
It is causing the following error:
Warning: Error in : external pointer is not valid
95: <Anonymous>
94: stop
93: x@pntr$deepcopy
92: .local
91: deepcopy
89: .local
88: rast
83: observe
82: <observer:observeEvent(input$runAnalysis)>
3: runApp
2: print.shiny.appobj
1: <Anonymous>
I thought that I solved the issue with the wrap und unwrap part. But now when I am running it at the hpc its not working... I allocated 1 node with 40 cores and a total --mem of 96gb ... Any suggestions?
I already tried to use plan(multisession) and plan(multicore) did not change the error...
Because it was asked for a reproducible example:
rm(list=ls())
# Required libraries
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
shiny,
terra,
sf,
exactextractr,
shinydashboard,
DT,
dplyr,
shinyFiles,
tidyverse,
raster,
tictoc,
parallel,
doParallel,
future,
foreach,
future.apply
)
#vegetation indices
indices_equations <- data.frame(
index = c("BI", "BIM", "SCI",
"GLI", "HI", "NGRDI",
"SI", "VARI", "HUE", "BGI",
"PSRI", "NDVI"),
eq = c("sqrt((Red^2+Green^2+Blue^2)/3)",
"sqrt((Red*2+Green*2+Blue*2)/3)",
"(Red-Green)/(Red+Green)",
"(2*Green-Red-Blue)/(2*Green+Red+Blue)",
"(2*Red-Green-Blue)/(Green-Blue)",
"(Green-Red)/(Green+Red)",
"(Red-Blue)/(Red+Blue)",
"(Green-Red)/(Green+Red-Blue)",
"atan(2*(Blue-Green-Red)/30.5*(Green-Red))",
"Blue/Green",
"(Red-Green)/RE",
"(NIR-Red)/(NIR+Red)"),
type = c("RGB", "RGB", "RGB",
"RGB", "RGB", "RGB",
"RGB", "RGB", "RGB", "RGB",
"Multispectral", "Multispectral")
)
# Create a sample 4-band RGBA raster
create_sample_raster <- function(size = 100) {
red <- matrix(runif(size^2, 0, 1), nrow = size)
green <- matrix(runif(size^2, 0, 1), nrow = size)
blue <- matrix(runif(size^2, 0, 1), nrow = size)
alpha <- matrix(rep(255, size^2), nrow = size)
r <- rast(red)
g <- rast(green)
b <- rast(blue)
a <- rast(alpha)
rgba <- c(r, g, b, a)
names(rgba) <- c("Red", "Green", "Blue", "Alpha")
return(rgba)
}
set.seed(145)
raster_rgb <- create_sample_raster()
names(raster_rgb) <- c("Red", "Green", "Blue", "Alpha")
input <- list()
input$rgbIndices <- c("BI", "BIM", "GLI")
input$numCores <- availableCores() / 2
p <- wrap(raster_rgb)
future::plan(future::multicore, workers = input$numCores)
raster_indices_rgb <- future.apply::future_lapply(input$rgbIndices, function(idx) {
idx_eq <- indices_equations$eq[indices_equations$index == idx]
# Create function dynamically and set its environment
idx_function <- eval(parse(text = paste0("function(Red, Green, Blue, Alpha) { return(", idx_eq, ") }")))
x <- terra::unwrap(p)
raster_idx <- terra::lapp(x, fun = idx_function, usenames = TRUE)
names(raster_idx) <- idx
return(setNames(list(raster_idx), idx))
})
raster_indices_rgb <- do.call(c, raster_indices_rgb)
future::plan(future::sequential)
plot(raster_indices_rgb$BIM)
As I said, my code works fine on my laptop. But when I go to the high performance cluster, I get the following error:
Error in .Call(list(name = "CppField__get", address = <pointer: (nil)>, :
NULL value passed as symbol address