最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

python - How to add function tools in the haystack pipeline? - Stack Overflow

programmeradmin2浏览0评论

I just started learning to create a chatbot using Haystack. Previously I was using Haystack 2.6 and just upgraded to 2.12.

Then I just compiled, copied, and tried all the codes that I found so they could be used in my chatbot.

Then I want to add a function calling tools in my chatbot. I want my chatbot can do a web searches to find results if it doesn't have any information from the RAG documents that I provided.

So I'm trying to integrate the DuckDuckGo into my chatbot.

I just following this (Haystack Agents) example from Haystack Docs but it's using Agents, and I'm not.

Actually, the chatbot is working, if I'm asking something it's returning a response. But when I ask a question that forces the chatbot to look into the current data by doing a web search, it says "I didn't have real-time data" which means the function tool for web search is not working.

I have no idea why the web search tool is not working. I think definitely there is an error or problem when I connect the component for the pipeline, or maybe I miss some components when adding the tool.

This is my pipeline:

import logging
import uuid
from typing import List
from haystack import Pipeline, Document
from haystack.utils import Secret
from haystack.tools import ComponentTool
from haystack.dataclasses import ChatMessage, ChatRole
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystackponents.retrievers.in_memory import InMemoryBM25Retriever
from haystackponents.generators import OpenAIGenerator
from haystackponents.builders.prompt_builder import PromptBuilder
from haystackponents.tools import ToolInvoker
from haystackponents.routers import ConditionalRouter
from get_chatbot_data import get_all_data
from duckduckgo_api_haystack import DuckduckgoApiWebSearch

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ChatbotRAGPipeline:
    def __init__(self, model="gpt-4o-mini"):
        self.model = model
        self.prompt_template = self._create_system_prompt()
        self.document_store = self._initialize_document_store()
        self.llm = self._initialize_language_model()
        self.retriever = self._initialize_retriever()
        self.prompt_builder = self._initialize_prompt_builder()
        self.web_route = self._initialize_web_route()
        self.web_tool = self._initialize_web_tool()
        self.rag_pipeline = self._initialize_rag_pipeline()

    def _initialize_web_route(self):
        routes = [
            {
                "condition": "{{replies[0].tool_calls | length > 0}}",
                "output": "{{replies}}",
                "output_name": "there_are_tool_calls",
                "output_type": List[ChatMessage],
            },
            {
                "condition": "{{replies[0].tool_calls | length == 0}}",
                "output": "{{replies}}",
                "output_name": "final_replies",
                "output_type": List[ChatMessage], 
            },
        ]
        return routes
    
    def _initialize_web_tool(self):
        web_tool = ComponentTool(
            name="WebSearch",
            description="Use this to search the web when you need real-time or recent information.",
            component=DuckduckgoApiWebSearch(top_k=10)
        )
        return web_tool
    
    def _create_system_prompt(self):
        return """
        You are an AI assistant designed to provide **clear, concise, and accurate** responses. Your goal is to **help users efficiently** while providing recommendations only if the question relates to something you can recommend. Your responses should be **direct, informative, and polite**, without unnecessary details or filler content.

        **Conversation Context**:
        {% if conversation_history %}
            Previous conversation history:
            {{ conversation_history }}
        {% else %}
            This is a new conversation.
        {% endif %}

        **Documents**:
        {% for doc in documents %}
            {{ doc.content }}
        {% endfor %}

        **Image Description**
        {% if image_description %}
            An image description has been provided. Use the description to assist with the response, including any user-related details that might be inferred.
            {{ image_description }}
        {% else %}
            No image description provided.
        {% endif %}

        **Question**: {{ question }}

        **Answer**:
        """

    def _initialize_document_store(self):
        try:
            datas, _ = get_all_data()
            documents = [
                Document(
                    content=data["content"],
                    meta=data["meta"],
                    id=str(uuid.uuid4())
                ) for data in datas
            ]
            document_store = InMemoryDocumentStore()
            document_store.write_documents(documents)
            return document_store
        except Exception as e:
            raise RuntimeError(f"Error initializing document store: {e}")

    def _initialize_language_model(self):
        api_key = "API_KEY"
        model_name = self.model
        return OpenAIGenerator(api_key=Secret.from_token(api_key), model=model_name)

    def _initialize_retriever(self):
        retriever = InMemoryBM25Retriever(document_store=self.document_store, top_k=50)
        return retriever
    
    def _initialize_prompt_builder(self):
        prompt_builder = PromptBuilder(template=self.prompt_template)
        return prompt_builder
    
    def _initialize_rag_pipeline(self):
        pipeline = Pipeline()
        pipeline.add_component("retriever", self.retriever)
        pipeline.add_component("prompt_builder", self.prompt_builder)
        pipeline.add_component("llm", self.llm)
        pipeline.add_component("router", ConditionalRouter(self.web_route))
        pipeline.add_component("tool_invoker", ToolInvoker(tools=[self.web_tool]))

        pipeline.connect("retriever.documents", "prompt_builder.documents")
        pipeline.connect("prompt_builder", "llm.prompt")
        pipeline.connect("llm.replies", "router.replies")
        pipeline.connect("router.there_are_tool_calls", "tool_invoker")
        return pipeline
发布评论

评论列表(0)

  1. 暂无评论