I am struggling to read a data asset from AzureML into my local python session. My code works up until I use mltable.load() (disguising my inputs with <...>
):
from azure.identity import DefaultAzureCredential
from azure.ai.ml import MLClient
import mltable
ml_client = MLClient(
credential=DefaultAzureCredential(),
subscription_id=<subscription_id>,
resource_group_name=<resource_group_name>,
workspace_name=<workspace_name>
)
data_asset = ml_client.data.get("my_dataset", version="1")
tbl = mltable.load(f'azureml:/{data_asset.id}')
data = tbl.to_pandas_dataframe()
The output of data_asset.id
is
'/subscriptions/<subscription_id>/resourceGroups/<resource_group_name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace_name>/data/my_dataset/versions/1'
The output of tbl = mltable.load(f'azureml:/{data_asset.id}')
is KeyError: 'paths'
:
image of KeyError: 'paths'
The data asset is simply a table queried from a AzureSQL database within the same resource group. I am following the exact guidelines from Azure for loading this datatable for interactive development. Why can't mltable
load my data asset? I am using python 3.9 if that makes a difference. Thank you.