I am pletely new to Machine learning and also to tensorflow.js, I am trying to predict the values of the next set but it is giving me "NaN" in result. What am I doing wrong ?
Following this Github example
async function myFirstTfjs(arr) {
// Create a simple model.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [2]}));
// Prepare the model for training: Specify the loss and the optimizer.
modelpile({
loss: 'meanSquaredError',
optimizer: 'sgd'
});
const xs = tf.tensor([[1,6],
[2,0],
[3,1],
[4,2],
[5,3],
[6,4],
[7,5],
[8,6],
[9,0],
[10,1],
[11,2],
[12,3],
[13,4],
[14,5],
[15,6],
[16,0],
[17,1],
[18,2],
[19,3],
[20,4],
[21,5],
[22,6],
[23,0],
[24,1],
[25,2],
[26,3]]);
const ys = tf.tensor([104780,30280,21605,42415,32710,30385,35230,97795,31985,34570,35180,30095,36175,57300,104140,30735,28715,36035,34515,42355,38355,110080,26745,35315,40365,30655], [26, 1]);
// Train the model using the data.
await model.fit(xs, ys, {epochs: 500});
// Use the model to do inference on a data point the model hasn't seen.
model.predict(tf.tensor(arr, [1, 2])).print();
}
myFirstTfjs([28,5]);
I am pletely new to Machine learning and also to tensorflow.js, I am trying to predict the values of the next set but it is giving me "NaN" in result. What am I doing wrong ?
Following this Github example
async function myFirstTfjs(arr) {
// Create a simple model.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [2]}));
// Prepare the model for training: Specify the loss and the optimizer.
model.pile({
loss: 'meanSquaredError',
optimizer: 'sgd'
});
const xs = tf.tensor([[1,6],
[2,0],
[3,1],
[4,2],
[5,3],
[6,4],
[7,5],
[8,6],
[9,0],
[10,1],
[11,2],
[12,3],
[13,4],
[14,5],
[15,6],
[16,0],
[17,1],
[18,2],
[19,3],
[20,4],
[21,5],
[22,6],
[23,0],
[24,1],
[25,2],
[26,3]]);
const ys = tf.tensor([104780,30280,21605,42415,32710,30385,35230,97795,31985,34570,35180,30095,36175,57300,104140,30735,28715,36035,34515,42355,38355,110080,26745,35315,40365,30655], [26, 1]);
// Train the model using the data.
await model.fit(xs, ys, {epochs: 500});
// Use the model to do inference on a data point the model hasn't seen.
model.predict(tf.tensor(arr, [1, 2])).print();
}
myFirstTfjs([28,5]);
Share
Improve this question
edited May 2, 2018 at 5:29
Pratik Khadtale
asked May 1, 2018 at 20:04
Pratik KhadtalePratik Khadtale
3055 silver badges11 bronze badges
2 Answers
Reset to default 4What's happening is that the large values in ys
are leading to a very large error. That large error, in bination with the (default) learning rate, are causing the model to overcorrect and be unstable. The model will converge if you lower the learning rate.
const learningRate = 0.0001;
const optimizer = tf.train.sgd(learningRate);
model.pile({
loss: 'meanSquaredError',
optimizer: optimizer,
});
Try convert your output to more readable and change your optimizer
var pred = model.predict(tf.tensor(arr, [1, 2]));
var readable_output = pred.dataSync();
console.log(readable_output);