最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

math - Javascript equivalent functions to Matlab Functions: PolyfitPolyval? - Stack Overflow

programmeradmin1浏览0评论

Desperately need a Javascript equivalent to polyval and polyfit functions that exist in Matlab. Essentially those functions in matlab do a curve fit based on two equally sized arrays depending on a specified polynomial. I need to do some calculations that involve curve fitting in javascript and can't for the life of me find an equivalent function.

This is MatLab's explanation of the function polyfit

"P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of degree N that fits the data Y best in a least-squares sense. P is a row vector of length N+1 containing the polynomial coefficients in descending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1)."

This is MatLab's explanation of polyval.

"POLYVAL Evaluate polynomial. Y = POLYVAL(P,X) returns the value of a polynomial P evaluated at X. P is a vector of length N+1 whose elements are the coefficients of the polynomial in descending powers.

    Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)"

Any help would be super.

Regards,

Desperately need a Javascript equivalent to polyval and polyfit functions that exist in Matlab. Essentially those functions in matlab do a curve fit based on two equally sized arrays depending on a specified polynomial. I need to do some calculations that involve curve fitting in javascript and can't for the life of me find an equivalent function.

This is MatLab's explanation of the function polyfit

"P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of degree N that fits the data Y best in a least-squares sense. P is a row vector of length N+1 containing the polynomial coefficients in descending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1)."

This is MatLab's explanation of polyval.

"POLYVAL Evaluate polynomial. Y = POLYVAL(P,X) returns the value of a polynomial P evaluated at X. P is a vector of length N+1 whose elements are the coefficients of the polynomial in descending powers.

    Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)"

Any help would be super.

Regards,

Share Improve this question edited Jul 26, 2011 at 16:47 Wayne 60.4k15 gold badges135 silver badges128 bronze badges asked Jul 26, 2011 at 7:12 SpetsSpets 2,4315 gold badges25 silver badges27 bronze badges
Add a ment  | 

4 Answers 4

Reset to default 3

numericjs may help you get started.

POLYFIT performs a least-square polynomial fitting which es down to solving a system of linear equations. I did a quick search, but I couldn't find a basic linear algebra Javascript library that solves such systems... The easiest method would be to implement the Gaussian elimination algorithm yourself.

POLYVAL is simply evaluating the polynomial at the points X by substituting the coefficients in the equation.

perhaps this code might help someone

function _prepare(_mat) {
_mat=[[]].concat(_mat)
for(i=0;i<_mat.length;++i)
    _mat[i]=[0].concat(_mat[i])
return _mat
}

function linear(_mat){
_mat=_prepare(_mat)
return _solve(_mat)
}


function _solve(_mat){
var c=new Array(),d=new Array()
var n=_mat.length-1

for(i=0;i<=n+1;i++) {
    d[i]=new Array();
    c[i]=0
    for(j=0;j<=n+1;++j)
        d[i][j]=0
}

// mission impossible
// calculate all the determinants of the system
for(m=2; m<=n ; ++m) {
    for(i=m;i<=n;++i)
        for(j = m-1;j<=n+1;++j)
            d[i][j] = [_mat[i][j] * _mat[m-1][m-1] , _mat[i][m-1]]
        for(i=m;i<=n;++i)
            for(j=m-1;j<=n+1;++j) {
                _mat[i][j] = d[i][j][0]-d[i][j][1]*_mat[m-1][j] 
                if(Math.abs(_mat[i][j])<1e-25) _mat[i][j]=0  // i have to add this line
            }
}
// now the coefficients of equation (not exactly)

for(i=n;i>=1;--i) {
    c[i-1] = _mat[i][n+1]
    if (i!=n)
    for(j=n; j>=i+1;--j)
        c[i-1] = c[i-1] -_mat[i][j] * c[j-1]
    if(_mat[i][i]!=0)
        c[i-1]=c[i-1] / _mat[i][i]
    else
        c[i-1]=0
    if(Math.abs(c[i-1])<1e-25)
        c[i-1]=0
}
c.length=n
return c
}

function fitpoly(e,b){
var a=new Array()
var n = 1+b,e=[[0,0]].concat(e),ns=e.length-1
for(i=0;i<=n+1;i++) {
    a[i]=new Array();
    for(j=0;j<=n+1;++j)
        a[i][j]=0
}
for(m=1;m <= n;m++)
    for(i=1;i<= m;i++) {
        j = m - i + 1; 
        for(ii=1;ii <= ns;ii++)
            a[i][j] = a[i][j] + Math.pow(e[ii][0], m-1)
    }  
for(i=1;i<= n;++i)
    for(ii=1;ii<=ns;++ii)
        a[i][n+1] = a[i][n+1] +e[ii][1]*Math.pow(e[ii][0],i-1) 
for(m = n+2 ; m <= 2*n ; ++m)
    for(i = m-n; i<= n;++i) {
        j= m -i 
        for(ii=1; ii<=ns;++ii)
            a[i][j] = a[i][j] + Math.pow(e[ii][0],m-2) // coefficients of system
    }
a.length=a.length-1  
return _solve(a)
}


//and then
poly_degree = 6
points= [[2,2],[2,4],[4,6],[6,4],[8,2]]
// coefficients of polynome 
console.log(fitpoly(points, poly_degree))

// or solve a linear system. Here with six variables
solution = linear([[1,2,3,-2,-3,-26,52],[3,2,5,-2,4,30,-60],[6,1,-4,-1,5,94,-188],[-1,2,4,3,4,30,-60],[-1,4,2,-1,2,26,-52],[3,-3,11,-7,-2,-1,-95]])
console.log(solution)

Give this gist a try, it uses numeric.js:

function polyfit(xArray, yArray, order) {

  if (xArray.length <= order) console.warn("Warning: Polyfit may be poorly conditioned.")

  let xMatrix = []
  let yMatrix = numeric.transpose([yArray])

  for (let i = 0; i < xArray.length; i++) {

    let temp = []

    for (let j = 0; j <= order; j++) {

      temp.push(Math.pow(xArray[i], j))

    }

    xMatrix.push(temp)

  }

  let xMatrixT = numeric.transpose(xMatrix)

  let dot1 = numeric.dot(xMatrixT, xMatrix)
  let dot2 = numeric.dot(xMatrixT, yMatrix)

  let dotInv = numeric.inv(dot1)

  let coefficients = numeric.dot(dotInv, dot2)

  return coefficients

}
发布评论

评论列表(0)

  1. 暂无评论