te')); return $arr; } /* 遍历用户所有主题 * @param $uid 用户ID * @param int $page 页数 * @param int $pagesize 每页记录条数 * @param bool $desc 排序方式 TRUE降序 FALSE升序 * @param string $key 返回的数组用那一列的值作为 key * @param array $col 查询哪些列 */ function thread_tid_find_by_uid($uid, $page = 1, $pagesize = 1000, $desc = TRUE, $key = 'tid', $col = array()) { if (empty($uid)) return array(); $orderby = TRUE == $desc ? -1 : 1; $arr = thread_tid__find($cond = array('uid' => $uid), array('tid' => $orderby), $page, $pagesize, $key, $col); return $arr; } // 遍历栏目下tid 支持数组 $fid = array(1,2,3) function thread_tid_find_by_fid($fid, $page = 1, $pagesize = 1000, $desc = TRUE) { if (empty($fid)) return array(); $orderby = TRUE == $desc ? -1 : 1; $arr = thread_tid__find($cond = array('fid' => $fid), array('tid' => $orderby), $page, $pagesize, 'tid', array('tid', 'verify_date')); return $arr; } function thread_tid_delete($tid) { if (empty($tid)) return FALSE; $r = thread_tid__delete(array('tid' => $tid)); return $r; } function thread_tid_count() { $n = thread_tid__count(); return $n; } // 统计用户主题数 大数量下严谨使用非主键统计 function thread_uid_count($uid) { $n = thread_tid__count(array('uid' => $uid)); return $n; } // 统计栏目主题数 大数量下严谨使用非主键统计 function thread_fid_count($fid) { $n = thread_tid__count(array('fid' => $fid)); return $n; } ?>glm - Get continuous predictor values from a probit glmer() model in R? - Stack Overflow
最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

glm - Get continuous predictor values from a probit glmer() model in R? - Stack Overflow

programmeradmin2浏览0评论

I am running a binomial probit model in R. Condition is a categorical variable with value Target as the treatment group (index is 10). pPrime is continuous between 0 and 1. TC_c is continuous. Weight_vec is a vector specifying how many trials each data point is represented by. This is necessary due to preprocessing steps taken to acquire pPrime, which is a transformed variable. The actual transformation is not relevant. The random effects in the model are a random slope and intercept (hence (1 + TC_c | Participant_Number)), but no random Condition*TC_c interaction.

model_dummy_Target = glmer(
  data = df,
  family = binomial(link = 'probit'),
  formula = "pPrime ~ (Condition * TC_c) + (1 + TC_c | Participant_Number)",
  contrasts = list(Condition = contr.treatment(levels(df$Condition), base = 10)),
  weights = Weight_vec
)

In essence, I need to find the value of TC_c per-person, per-condition where the probability of responding correctly is 0.5 pPrime == 0.5.

Below is sample some of my data:

structure(list(Participant_Number = structure(c(1L, 1L, 1L, 1L, 
1L, 1L, 11L, 11L, 11L, 11L, 11L, 11L), levels = c("42", "43", 
"44", "46", "49", "50", "51", "52", "54", "56", "57"), class = "factor"), 
    Condition = structure(c(5L, 6L, 1L, 3L, 5L, 6L, 5L, 6L, 7L, 
    8L, 9L, 10L), levels = c("C_10", "C_12", "C_14", "C_15", 
    "C_16", "C_18", "C_20", "C_22", "Straight", "Target"), class = "factor"), 
    TC_c = c(-3.20231496062992, -3.20231496062992, -2.90231496062992, 
    -2.90231496062992, -2.90231496062992, -2.90231496062992, 
    6.91768503937008, 6.91768503937008, 6.91768503937008, 6.91768503937008, 
    6.91768503937008, 6.91768503937008), pPrime = c(0, 0, 0, 
    0, 0.166666458333594, 0.196428360969613, 0.999999000001, 
    0.999999000001, 0.999998846155178, 0.999998846155178, 0.999999000001, 
    0.999998750001562)), class = "data.frame", row.names = c(1L, 
2L, 3L, 4L, 5L, 6L, 1265L, 1266L, 1267L, 1268L, 1269L, 1270L))
发布评论

评论列表(0)

  1. 暂无评论