te')); return $arr; } /* 遍历用户所有主题 * @param $uid 用户ID * @param int $page 页数 * @param int $pagesize 每页记录条数 * @param bool $desc 排序方式 TRUE降序 FALSE升序 * @param string $key 返回的数组用那一列的值作为 key * @param array $col 查询哪些列 */ function thread_tid_find_by_uid($uid, $page = 1, $pagesize = 1000, $desc = TRUE, $key = 'tid', $col = array()) { if (empty($uid)) return array(); $orderby = TRUE == $desc ? -1 : 1; $arr = thread_tid__find($cond = array('uid' => $uid), array('tid' => $orderby), $page, $pagesize, $key, $col); return $arr; } // 遍历栏目下tid 支持数组 $fid = array(1,2,3) function thread_tid_find_by_fid($fid, $page = 1, $pagesize = 1000, $desc = TRUE) { if (empty($fid)) return array(); $orderby = TRUE == $desc ? -1 : 1; $arr = thread_tid__find($cond = array('fid' => $fid), array('tid' => $orderby), $page, $pagesize, 'tid', array('tid', 'verify_date')); return $arr; } function thread_tid_delete($tid) { if (empty($tid)) return FALSE; $r = thread_tid__delete(array('tid' => $tid)); return $r; } function thread_tid_count() { $n = thread_tid__count(); return $n; } // 统计用户主题数 大数量下严谨使用非主键统计 function thread_uid_count($uid) { $n = thread_tid__count(array('uid' => $uid)); return $n; } // 统计栏目主题数 大数量下严谨使用非主键统计 function thread_fid_count($fid) { $n = thread_tid__count(array('fid' => $fid)); return $n; } ?>data structures - How to optimize Delete-Max operation in an unbalanced Binary Search Tree? - Stack Overflow
最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

data structures - How to optimize Delete-Max operation in an unbalanced Binary Search Tree? - Stack Overflow

programmeradmin1浏览0评论

I am working on optimizing the Delete-Max operation in an unbalanced Binary Search Tree (BST) where frequent max deletions occur.

Here the i faced issues-

  1. The BST loses balance

  2. Search operations degrade

  3. Need a strategy that prevents tree degeneration into a linked list.

Here is my current implementation of Delete-Max:

public class Node
{
    public int Value;
    public Node Left, Right;

    public Node(int value)
    {
        Value = value;
        Left = Right = null;
    }
}

public class BinarySearchTree
{
    public Node Root;

    
    public Node DeleteMax(Node root)
    {
        if (root == null)
            return null;

        if (root.Right == null)
        {
            return root.Left; 
        }

        root.Right = DeleteMax(root.Right);
        return root;
    }
}
发布评论

评论列表(0)

  1. 暂无评论