What is the fastest way to count the number of significant digits of a number?
I have the following function, which works, but is quite slow due to string operations.
/**
* Count the number of significant digits of a number.
*
* For example:
* 2.34 returns 3
* 0.0034 returns 2
* 120.5e+3 returns 4
*
* @param {Number} value
* @return {Number} The number of significant digits
*/
function digits (value) {
return value
.toExponential()
.replace(/e[\+\-0-9]*$/, '') // remove exponential notation
.replace( /^0\.?0*|\./, '') // remove decimal point and leading zeros
.length
};
Is there a faster way?
Update: here a list of assertions to test correct functioning:
assert.equal(digits(0), 0);
assert.equal(digits(2), 1);
assert.equal(digits(1234), 4);
assert.equal(digits(2.34), 3);
assert.equal(digits(3000), 1);
assert.equal(digits(0.0034), 2);
assert.equal(digits(120.5e50), 4);
assert.equal(digits(1120.5e+50), 5);
assert.equal(digits(120.52e-50), 5);
assert.equal(digits(Math.PI), 16);
My own method failed for digits(0)
, I fixed that by adding a ?
to the second regexp.
What is the fastest way to count the number of significant digits of a number?
I have the following function, which works, but is quite slow due to string operations.
/**
* Count the number of significant digits of a number.
*
* For example:
* 2.34 returns 3
* 0.0034 returns 2
* 120.5e+3 returns 4
*
* @param {Number} value
* @return {Number} The number of significant digits
*/
function digits (value) {
return value
.toExponential()
.replace(/e[\+\-0-9]*$/, '') // remove exponential notation
.replace( /^0\.?0*|\./, '') // remove decimal point and leading zeros
.length
};
Is there a faster way?
Update: here a list of assertions to test correct functioning:
assert.equal(digits(0), 0);
assert.equal(digits(2), 1);
assert.equal(digits(1234), 4);
assert.equal(digits(2.34), 3);
assert.equal(digits(3000), 1);
assert.equal(digits(0.0034), 2);
assert.equal(digits(120.5e50), 4);
assert.equal(digits(1120.5e+50), 5);
assert.equal(digits(120.52e-50), 5);
assert.equal(digits(Math.PI), 16);
My own method failed for digits(0)
, I fixed that by adding a ?
to the second regexp.
6 Answers
Reset to default 9Here's a more mathematical way of doing the same operation (which appears to be significantly faster)
JSPerf comparing the three implementations
Accurate for integer n < +-(2^53)
per http://ecma262-5.com/ELS5_HTML.htm#Section_8.5
Floats are converted to a string and then coerced to an int (by removing the decimal so similar rules apply)
var log10 = Math.log(10);
function getSignificantDigitCount(n) {
n = Math.abs(String(n).replace(".", "")); //remove decimal and make positive
if (n == 0) return 0;
while (n != 0 && n % 10 == 0) n /= 10; //kill the 0s at the end of n
return Math.floor(Math.log(n) / log10) + 1; //get number of digits
}
Slight improvement of regular expression
function digits (value) {
return value
.toExponential()
.replace(/^([0-9]+)\.?([0-9]+)?e[\+\-0-9]*$/g, "$1$2")
.length
};
And yet another approach, that uses string operations and handles some special cases for better performance:
function digits(value) {
if (value === 0) {
return 0;
}
//create absolute value and
var t1 = ("" + Math.abs(value));
//remove decimal point
var t2 = t1.replace(".","");
//if number is represented by scientific notation,
//the places before "e" (minus "-" and ".") are the
//significant digits. So here we can just return the index
//"-234.3e+50" -> "2343e+50" -> indexOf("e") === 4
var i = t2.indexOf("e");
if (i > -1) {
return i;
}
//if the original number had a decimal point,
//trailing zeros are already removed, since irrelevant
//0.001230000.toString() -> "0.00123" -> "000123"
if (t2.length < t1.length) {
// -> remove only leading zeros
return t2.replace(/^0+/,'').length;
}
//if number did not contain decimal point,
//leading zeros are already removed
//000123000.toString() -> "123000"
// -> remove only trailing zeros
return t2.replace(/0+$/,'').length;
}
You can directly examine the bytes of a floating-point value by using typed arrays. The advantages of doing this are that it's fast, and it doesn't require any math to be done. You can look directly at the bits of the mantissa.
You can start with this:
var n = yourFloatingPointValue;
var f64 = new Float64Array(1);
var dv = new DataView(f64.buffer);
dv.setFloat64(0, n, false); // false -> big-endian
var bytes = [];
for (var i = 0; i < 8; i++)
bytes.push(dv.getUint8(i));
Now the bytes
array contains integers representing the 8-bit values of the floating point value as it looks in memory. The first byte contains the sign bit in the top bit position, and the first 7 bits of the exponent in the rest. The second byte contains the 5 least-significant bits of the exponent and the first three bits of the mantissa. The rest of the bytes are all mantissa.
Regular string checking. A slight of improvement though.
function digits(value) {
value = "" + value;
var res = 0;
for (var i = 0, len = value.length; i < len; i++){
if (value[i]==="e")break;
if (+value[i]>=0)
res++;
}
return res;
};
jsperf Benchmark testing result as compared to the OP's and other answers code.
Update
function digits(value) {
console.log(value);
value = "" + (+value);
var res = 0;
for (var i = 0, len = value.length; i < len; i++) {
if (value[i] === "e")
{
break;
}
if (+value[i] >= 0)
{
res++;
}
}
console.log(value);
return res;
}
function check(val1, val2) {
console.log( val1+"==="+val2 +" = "+ (val1 === val2));
return val1 === val2;
}
check(digits(0), 1);
check(digits(2), 1);
check(digits(1234), 4);
check(digits("0012003400"), 8);
check(digits("0022.002200"), 6);
check(digits(2.34), 3);
check(digits(3000), 4);
check(digits(0.0034), 2);
check(digits(12003), 5);
check(digits(1.23e+50), 3);
check(digits("1.23e+50"), 3);
check(digits(120.5e51), 4);
check(digits(1120.5e+52), 5);
check(digits(120.52e-53), 5);
check(digits(Math.PI), 16);
There is a faster and indirect way to do it, which is converting it to a string and finding the length of it.
a = 2.303
sig_fig = len(str(a))-len(str(int(a)))-1
The extra -1 is for the "."
0.3
is a repeating fraction in binary for example. – Pointy Commented Apr 5, 2014 at 23:23