Hadoop
Hadoop[2]是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。5.低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。Hadoop 由许多元素构成。其最底部是 Hadoop Distributed File System[3](HDFS),它存储 Hadoop 集群中所有存储节点上的文件。HDFS(对于本文)的上一层是MapReduce 引擎,该引擎由 JobTrackers 和 TaskTrackers 组成。HDFS对外部客户机而言,HDFS就像一个传统的分级文件系统。可以创建、删除、移动或重命名文件,等等。但是 HDFS 的架构是基于一组特定的节点构建的(参见图 1),这是由它自身的特点决定的。这些节点包括 NameNode(仅一个),它在 HDFS 内部提供元数据服务;DataNode,它为 HDFS 提供存储块。由于仅存在一个 NameNode,因此这是 HDFS 的一个缺点(单点失败)。.rtcscls-1-s_p_1 { text-align: justify; }.rtcscls-1-s_p_3_rId_a { text-align: justify; }.rtcscls-1-s_r_0 { font-size: 18px; }.rtcscls-1-s_sn_2_rId_a { }.rtcscls-1-s_sn_4_rId_a0 { }.rtcscls-1-s_sn_5_rId_a1 { }.rtcscls-1-s_tbl_6_rId_a1 { }存储在 HDFS 中的文件被分成块,然后将这些块复制到多个计算机中(DataNode)。这与传统的 RAID 架构大不相同。块的大小(通常为 64MB)和复制的块数量在创建文件时由客户机决定。NameNode 可以控制所有文件操作。HDFS 内部的所有通信都基于标准的 TCP/IP 协议。NameNodeNameNode 是一个通常在 HDFS 实例中的单独机器上运行的软件。它负责管理文件系统名称空间和控制外部客户机的访问。NameNode 决定是否将文件映射到 DataNode 上的复制块上。对于最常见的 3 个复制块,第一个复制块存储在同一机架的不同节点上,最后一个复制块存储在不同机架的某个节点上。注意,这里需要您了解集群架构。实际的 I/O事务并没有经过 NameNode,只有表示 DataNode 和块的文件映射的元数据经过 NameNode。当外部客户机发送请求要求创建文件时,NameNode 会以块标识和该块的第一个副本的 DataNode IP 地址作为响应。这个 NameNode 还会通知其他将要接收该块的副本的 DataNode。NameNode 在一个称为 FsImage 的文件中存储所有关于文件系统名称空间的信息。这个文件和一个包含所有事务的记录文件(这里是 EditLog)将存储在 NameNode 的本地文件系统上。FsImage 和 EditLog 文件也需要复制副本,以防文件损坏或 NameNode 系统丢失。NameNode本身不可避免地具有SPOF(Single Point Of Failure)单点失效的风险,主备模式并不能解决这个问题,通过Hadoop Non-stop namenode才能实现100% uptime可用时间。[4]DataNodeDataNode 也是一个通常在 HDFS实例中的单独机器上运行的软件。Hadoop 集群包含一个 NameNode 和大量 DataNode。DataNode 通常以机架的形式组织,机架通过一个交换机将所有系统连接起来。Hadoop 的一个假设是:机架内部节点之间的传输速度快于机架间节点的传输速度。.rtcscls-2-s_p_1 { text-align: justify; }.rtcscls-2-s_p_3_rId_a { text-align: justify; }.rtcscls-2-s_r_0 { font-size: 18px; }.rtcscls-2-s_sn_2_rId_a { }.rtcscls-2-s_sn_4_rId_a0 { }.rtcscls-2-s_sn_5_rId_a1 { }.rtcscls-2-s_tbl_6_rId_a1 { }DataNode 响应来自 HDFS 客户机的读写请求。它们还响应来自 NameNode 的创建、删除和复制块的命令。NameNode 依赖来自每个 DataNode 的定期心跳(heartbeat)消息。每条消息都包含一个块报告,NameNode 可以根据这个报告验证块映射和其他文件系统元数据。如果 DataNode 不能发送心跳消息,NameNode 将采取修复措施,重新复制在该节点上丢失的块。文件操作可见,HDFS 并不是一个万能的文件系统。它的主要目的是支持以流的形式访问写入的大型文件。如果客户机想将文件写到 HDFS 上,首先需要将该文件缓存到本地的临时存储。如果缓存的数据大于所需的 HDFS 块大小,创建文件的请求将发送给 NameNode。NameNode 将以 DataNode 标识和目标块响应客户机。同时也通知将要保存文件块副本的 DataNode。当客户机开始将临时文件发送给第一个 DataNode 时,将立即通过管道方式将块内容转发给副本 DataNode。客户机也负责创建保存在相同 HDFS名称空间中的校验和(checksum)文件。在最后的文件块发送之后,NameNode 将文件创建提交到它的持久化元数据存储(在 EditLog 和 FsImage 文件)。应用程序编辑Hadoop 的最常见用法之一是 Web 搜索。虽然它不是惟一的软件框架应用程序,但作为一个并行数据处理引擎,它的表现非常突出。Hadoop 最有趣的方面之一是 Map and Reduce 流程,它受到Google开发的启发。这个流程称为创建索引,它将 Web爬行器检索到的文本 Web 页面作为输入,并且将这些页面上的单词的频率报告作为结果。然后可以在整个 Web 搜索过程中使用这个结果从已定义的搜索参数中识别内容。MapReduce最简单的 MapReduce应用程序至少包含 3 个部分:一个 Map 函数、一个 Reduce 函数和一个 main 函数。main 函数将作业控制和文件输入/输出结合起来。在这点上,Hadoop 提供了大量的接口和抽象类,从而为 Hadoop应用程序开发人员提供许多工具,可用于调试和性能度量等。.rtcscls-3-s_p_1 { text-align: justify; }.rtcscls-3-s_p_3_rId_a { text-align: justify; }.rtcscls-3-s_r_0 { font-size: 18px; }.rtcscls-3-s_sn_2_rId_a { }.rtcscls-3-s_sn_4_rId_a0 { }.rtcscls-3-s_sn_5_rId_a1 { }.rtcscls-3-s_tbl_6_rId_a1 { }MapReduce 本身就是用于并行处理大数据集的软件框架。MapReduce 的根源是函数性编程中的 map 和 reduce 函数。它由两个可能包含有许多实例(许多 Map 和 Reduce)的操作组成。Map 函数接受一组数据并将其转换为一个键/值对列表,输入域中的每个元素对应一个键/值对。Reduce 函数接受 Map 函数生成的列表,然后根据它们的键(为每个键生成一个键/值对)缩小键/值对列表。这里提供一个示例,帮助您理解它。假设输入域是 one small step for man,one giant leap for mankind。在这个域上运行 Map 函数将得出以下的键/值对列表:(one,1) (small,1) (step,1) (for,1) (man,1)MapReduce 流程的概念流(one,1) (giant,1) (leap,1) (for,1) (mankind,1)如果对这个键/值对列表应用 Reduce 函数,将得到以下一组键/值对:(one,2) (small,1) (step,1) (for,2) (man,1)(giant,1) (leap,1) (mankind,1)结果是对输入域中的单词进行计数,这无疑对处理索引十分有用。但是,假显示处理和存储的物理分布的 Hadoop 集群设有两个输入域,第一个是 one small step for man,第二个是 one giant leap for mankind。您可以在每个域上执行 Map 函数和 Reduce 函数,然后将这两个键/值对列表应用到另一个 Reduce 函数,这时得到与前面一样的结果。换句话说,可以在输入域并行使用相同的操作,得到的结果是一样的,但速度更快。这便是 MapReduce 的威力;它的并行功能可在任意数量的系统上使用。图 2 以区段和迭代的形式演示这种思想。.rtcscls-4-s_p_1 { text-align: justify; }.rtcscls-4-s_p_3_rId_a { text-align: justify; }.rtcscls-4-s_r_0 { font-size: 18px; }.rtcscls-4-s_sn_2_rId_a { }.rtcscls-4-s_sn_4_rId_a0 { }.rtcscls-4-s_sn_5_rId_a1 { }.rtcscls-4-s_tbl_6_rId_a1 { }回到 Hadoop 上,它是如何实现这个功能的?一个代表客户机在单个主系统上启动的 MapReduce应用程序称为 JobTracker。类似于 NameNode,它是 Hadoop 集群中惟一负责控制 MapReduce应用程序的系统。在应用程序提交之后,将提供包含在 HDFS 中的输入和输出目录。JobTracker 使用文件块信息(物理量和位置)确定如何创建其他 TaskTracker 从属任务。MapReduce应用程序被复制到每个出现输入文件块的节点。将为特定节点上的每个文件块创建一个惟一的从属任务。每个 TaskTracker 将状态和完成信息报告给 JobTracker。图 3 显示一个示例集群中的工作分布。Hadoop 的这个特点非常重要,因为它并没有将存储移动到某个位置以供处理,而是将处理移动到存储。这通过根据集群中的节点数调节处理,因此支持高效的数据处理。6开源实现编辑Hadoop是项目的总称[5]。主要是由HDFS和MapReduce组成。HDFS是Google File System(GFS)的开源实现。MapReduce是Google MapReduce的开源实现。这个分布式框架很有创造性,而且有极大的扩展性,使得Google在系统吞吐量上有很大的竞争力。因此Apache基金会用Java实现了一个开源版本,支持Fedora、Ubuntu等Linux平台。雅虎和硅谷风险投资公司Benchmark Capital 联合成立一家名为Hortonworks的新公司,接管被广泛应用的数据分析软件Hadoop的开发工作。Hadoop实现了HDFS文件系统和MapRecue。用户只要继承MapReduceBase,提供分别实现Map和Reduce的两个类,并注册Job即可自动分布式运行。至今为止是2.2.0,稳定版本是1.2.1 和 yarn 的 2.2.0。HDFS把节点分成两类:NameNode和DataNode。NameNode是唯一的,程序与之通信,然后从DataNode上存取文件。这些操作是透明的,与普通的文件系统API没有区别。.rtcscls-5-s_p_1 { text-align: justify; }.rtcscls-5-s_p_3_rId_a { text-align: justify; }.rtcscls-5-s_r_0 { font-size: 18px; }.rtcscls-5-s_sn_2_rId_a { }.rtcscls-5-s_sn_4_rId_a0 { }.rtcscls-5-s_sn_5_rId_a1 { }.rtcscls-5-s_tbl_6_rId_a1 { }文件,数据,节点,处理,客户机,创建