最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

pytorch - Why does torch_geometric.Batch add edge_index, edge_attr and pos to my custom Data even when not set? - Stack Overflow

programmeradmin2浏览0评论

I'm using PyTorch Geometric and have a custom Torus class (a subclass of Data) that conditionally initializes attributes such as edge_index, edge_attr, and pos only when no_fixed is False. For example:

class Torus(Data):
    def __init__(self, N: int = 64, L: float = 64.0, M: int = 64,
                 x: torch.Tensor = None, y: torch.Tensor = None,
                 eight_neighbors: bool = False, device=None, no_fixed: bool = False):
        if no_fixed:
            super().__init__(x=x, y=y)
        else:
            pos = grid_pos(N, L, device)
            edge_index, edge_attr = torus_edges(N, L, pos, eight_neighbors, device)
            super().__init__(x=x, y=y, edge_index=edge_index, edge_attr=edge_attr, pos=pos)
        self.N = torch.tensor(N, dtype=torch.long).unsqueeze(0)
        self.L = torch.tensor(L, dtype=torch.float).unsqueeze(0)
        self.M = torch.tensor(M, dtype=torch.long).unsqueeze(0)
        self.eight_neighbors = torch.tensor(eight_neighbors, dtype=torch.int).unsqueeze(0)

When I create individual Torus objects with no_fixed=True, they do not have the edge_index, edge_attr, or pos attributes. However, if I batch them using:

batch = Batch.from_data_list(torus_list)

the resulting batch unexpectedly contains edge_index, edge_attr, and pos (with shapes like [128^2, ...] etc).

Why does the batching process add these attributes to the batch even though none of the individual objects have them? Is this expected behavior due to how PyG’s Batch class works?

Any insights would be appreciated!

与本文相关的文章

发布评论

评论列表(0)

  1. 暂无评论